Hey folks,(adsbygoogle = window.adsbygoogle || []).push({});

Is it generally true that for US Math PhD programs, Riemannian geometry is a 2nd year grad course? I was looking at JHU, one of the PhD programs I will be applying to, and they don't require you take any prereq grad courses. And the cirriculum seems to be the standard RG cirriculum: metrics, Jacobi fields, curvature, sectional curvature, Hopf-Rinow, etc.

Some schools require that your first year of grad school is essentially Algebra I, II, Analysis I, II and Topology (with a mix of Geometry via differential forms, deRham cohomology, differentiable manifold, vector fields, tensors, lie derivatives, and so on) I and II.

What are your experiences with this? I don't see why it would be a first year course as not all students are going to be pursuing RG in graduate school anyway while all grad students should know basic grad level analysis, algebra and topology/geometry.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Riemannian Geometry

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**