Hi!(adsbygoogle = window.adsbygoogle || []).push({});

Reading some string theory books I always find that the introductory chapters discuss the relativistic free particle (see Lüst-Theisen, or Becker-Becker-Schwarz, page 21, exercise 2.3).

Then they go on about showing that the action

[itex]S=-m\int^{t_1}_{t_2} dx = -m \int^{t_1}_{t_2}d\tau\sqrt{-\frac{dx^\mu}{d \tau} \frac{dx^\nu}{d \tau} \eta_{\mu\nu}}[/itex]

is invariant under "infinitesimal reparametrizations"

[itex] \tau \rightarrow \tau' = \tau + \xi(\tau) [/itex],

for this they just Taylor expand

[itex] x'^{\mu}(\tau')=x^{\mu}(\tau) [/itex]

around [itex]\tau[/itex] and drop terms of order [itex]O(\xi(\tau)^2)[/itex] to find the function "shift"

[itex]\delta x^\mu (\tau)= x'^\mu (\tau)- x^\mu(\tau) = -\xi(\tau)\partial_\tau x^\mu(\tau)[/itex]

Two things I find annoying (even though that's how I learned it as a physicist):

1) Expanding [itex] x'^{\mu}(\tau')=x^{\mu}(\tau) [/itex] we get [itex]x'^\mu(\tau)+ \xi(\tau)\partial_\tau x'^\mu(\tau)=x^\mu(\tau)[/itex] therefore

[itex]\delta x^\mu (\tau)= x'^\mu (\tau)- x^\mu(\tau) = -\xi(\tau)\partial_\tau x'^\mu(\tau)[/itex] which is not the above result. The justification given in some lecture notes (this trick is also widely used in General Relativity) recall that

[itex] x'^\mu(\tau)= x'^\mu(\tau'-\xi(\tau))=x'^\mu(\tau')-\xi(\tau)\partial_{\tau'} x'^\mu(\tau')=x^\mu(\tau)-\xi(\tau)\partial_{\tau'} x'^\mu(\tau')[/itex].

However, when taking the tau derivative to this:

[itex] \partial_\tau x'^\mu(\tau)=\partial_\tau x^\mu(\tau)-\partial_\tau\xi(\tau)\cdot\partial_{\tau'} x'^\mu(\tau') - \xi(\tau)\cdot\partial_\tau\partial_{\tau'} x'^\mu(\tau') [/itex].

Now, multiplying by [itex]-\xi(\tau)[/itex] to get the shift of the function:

[itex] \delta x^\mu (\tau)= -\xi(\tau)\partial_\tau x^\mu(\tau)+\xi(\tau)\cdot \partial_\tau\xi(\tau)\cdot\partial_{\tau'}x'^\mu(\tau') [/itex] where I ommited the third term as it is quadratic in xi. However, the term that has the derivative of xi cannot be ommited since the derivative of an "infinitesimal" quantity doesn't necessarily have to be infinitesimal. Something being small does not imply that its derivative is small.

As you see, this all boils down to the heuristic treatment that Physics books give to the "infinitesimal" variation.

2) How can I reformulate rigorously the idea of a "shift" of the function [itex] x^\mu [/itex], maybe in terms of pushforwards and such (at the rigor of mathematics)? This would also clarify much of the above paragraph.

Thanks for any help

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Rigorous treatment of infinitesimal reparametrizations

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads - Rigorous treatment infinitesimal | Date |
---|---|

Infinitesimal SUSY transformation of SYM lagrangian | Sep 27, 2013 |

String treatment of the quantum graphity model | Feb 20, 2011 |

How to get from representations to finite or infinitesimal transformations? | Sep 25, 2009 |

Is there a rigorous proof | Sep 3, 2006 |

Immunity to infinitesimal perturbations | May 18, 2005 |

**Physics Forums - The Fusion of Science and Community**