Calculate the root, mean, square of v(t) where(adsbygoogle = window.adsbygoogle || []).push({});

v(t) = 0 0 < wt <= theta

v(t) = Vm*sin(wt) theta < wt <= pi()

v(t) = 0 pi() < wt <= pi()+theta

v(t) = Vm*sin(wt) pi()+theta < wt <= 2*pi()

In integral form, I am confident that it looks like this.

Vrms = SQRT(1/T*INTEGRAL(Vm^2*sin^2(wt)dt)) from theta/w to pi/w AND pi+theta/w to 2*pi/w

I believe it integrates like this. My thought was that I could integrate only one of the ranges and then double my answer due to symmetry in the sinusoidal function.

Vrms = Vm*SQRT(w/2*pi*(t/2-sin(2wt)/4w)) evaluated from theta/w to pi/w

After substitions and simplification (which I have been over about 10-15 times) I get this.

Vrms = Vm - Vm*SQRT(1/pi*(theta-sin(theta)*cos(theta)))

I know this is wrong because when I evaluate this equation at theta = pi, the value is zero. The correct value is Vrms = Vm/SQRT(2) when theta = pi. I have either defined the problem wrong somehow or I have performed the integral wrong.

Many thanks for any help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# RMS Derivation of Piecewise Sinusiodal Function

**Physics Forums | Science Articles, Homework Help, Discussion**