1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Roots of complex numbers

  1. Jan 27, 2008 #1

    rock.freak667

    User Avatar
    Homework Helper

    1. The problem statement, all variables and given/known data
    Find the roots of the equation
    [tex]z^3=-(4\sqrt{3})+4i[/tex]

    giving your answers in the form [itex]re^{i\theta}[/itex], where r>0 and [itex]0\leq \theta<2\pi[/itex]

    Denoting these roots by [itex]z_1,z_2,z_3[/itex], show that, for every positive integer k.

    [tex]z_1^{3k}+z_2^{3k}+z_3^{3k}=3(2^{3k}e^{\frac{5}{6}k\pi i})[/tex]

    2. Relevant equations

    complex number formulas

    3. The attempt at a solution

    [tex]z^3=-(4\sqrt{3})+4i[/tex]

    [tex]= z^3=8e^{\frac{5}{6}\pi i}[/tex]


    [tex]z=2e^{\frac{5}{18}\pi i}[/tex]

    [tex]z=2e^{(\frac{5}{18}\pi + \frac{2k}{3})i}[/tex] k=0,1,2

    therefore the roots are

    [tex]z=2e^{\frac{5}{18}\pi i},2e^{\frac{17}{18}\pi i},2e^{\frac{29}{18}\pi i}[/tex]

    subbing the roots into what they want me to show


    [tex](2e^{\frac{5}{18}\pi i})^{3k}+(2e^{\frac{17}{18}\pi i})^{3k}+(2e^{\frac{29}{18}\pi i})^{3k}[/tex]

    [tex]2^{3k}(e^{\frac{5k}{6}\pi i}+e^{\frac{17k}{6}\pi i}+e^{\frac{29k}{18}\pi i})[/tex]

    [tex]2^{3k}e^{\frac{5}{6}\pi i}(1+e^{2k}+e^{4k})[/tex]

    Now I am stuck.
     
  2. jcsd
  3. Jan 27, 2008 #2
    It should be

    [tex]e^{\frac{17k}{6}\pi i}=e^{\frac{5k}{6}\pi i}\,e^{\frac{12k}{6}\pi i}=e^{\frac{5k}{6}\pi i}\,e^{2\,k\,\pi i}=e^{\frac{5k}{6}\pi i}[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Roots of complex numbers
Loading...