If we look at the rotational transformation (specifically in the x-y plane) we get(adsbygoogle = window.adsbygoogle || []).push({});

x' = cos(wt)*x - sin(wt)*y

y' = cos(wt)*y + sin(wt)*x

z' = z

t' = t

and we can write

dx' = cos(wt)*dx - sin(wt)*dy -w*(y*cos(wt)+x*sin(wt))*dt

dy' = cos(wt)*dy + sin(wt)*dx + w*(x*cos(wt)-y*sin(wt))*dt

dz' = dz

dt' = dt

We can intepret dx,dy,dz, and dt as one-forms, the basis of the cotangent space.

When we substitute x=y=z=t=0, we find that

dx' = dx

dy' = dy

and of course

dz' = dz

dt' = dt

This means that rotation in x and y leaves the basis one-forms invariant at the origin (the origin of the rotation).

Letting u_1 = dx, u_2=dy, u_3 = dz, and u_4 = dt, we can ask what the basis vectors of the tangent space are.

These will be just u^{i}= g^{ij}u_{j}

Because the basis one-forms are not changed at the origin by rotation, and the above equation converts the basis one-forms into basis vectors, the basis vectors are also not changed at the origin by rotation.

The argument appears to me to be completely general - it says that tranforming a tensor quantity into a spatially rotating coordinate system does not have and can never have any effect on a tensor quantity at the origin of the rotation.

Does anyone see any flaws to this argument?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Rotating coordinates, again

Loading...

Similar Threads for Rotating coordinates again | Date |
---|---|

I Rotating black hole with a ring | Monday at 2:54 PM |

I Do rotating singularities experience radial acceleration? | Mar 18, 2018 |

I Exceeding the speed of light (stars seem to exceed c in our Earth's rotating reference frame) | Jan 7, 2018 |

Geodesics in a rotating coordinate system | Jun 22, 2012 |

Rotation of coordinate system in minkowsky spacetime | Jun 26, 2011 |

**Physics Forums - The Fusion of Science and Community**