- #1
- 16
- 1
for compute:
$$e^{\frac{iS_z\phi}{\hbar}}S_x e^{\frac{-iS_z\phi}{\hbar}}$$
so, if we use $$S_x=(\frac{\hbar}{2})[(|+><-|)+(|-><+|)]$$
$$e^{\frac{iS_z\phi}{\hbar}}(\frac{\hbar}{2})[(|+><-|)+(|-><+|)] e^{\frac{-iS_z\phi}{\hbar}}$$
so, why that is equal to $$(\frac{\hbar}{2})[\frac{i\phi}{2}|+><-|\frac{i\phi}{2}+\frac{-i\phi}{2}|-><+|\frac{-i\phi}{2}]$$
??
$$e^{\frac{iS_z\phi}{\hbar}}S_x e^{\frac{-iS_z\phi}{\hbar}}$$
so, if we use $$S_x=(\frac{\hbar}{2})[(|+><-|)+(|-><+|)]$$
$$e^{\frac{iS_z\phi}{\hbar}}(\frac{\hbar}{2})[(|+><-|)+(|-><+|)] e^{\frac{-iS_z\phi}{\hbar}}$$
so, why that is equal to $$(\frac{\hbar}{2})[\frac{i\phi}{2}|+><-|\frac{i\phi}{2}+\frac{-i\phi}{2}|-><+|\frac{-i\phi}{2}]$$
??
Last edited: