1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Rotational motion problem

  1. Jun 18, 2005 #1
    A boy of mass m runs on ice with velocity v and steps on the end of a plank of length l and mass M perpendicular to his path.
    Describe quantitatively the motion of the sytem.Neglect friction
    One point on the plank is at rest immediately after the collision.Where is it?
     
  2. jcsd
  3. Jun 18, 2005 #2
  4. Jun 18, 2005 #3

    Curious3141

    User Avatar
    Homework Helper

    The OP has not shown any work, but if this is the question he was given (verbatim), it's a piss poor question.

    If friction is neglected, then I'd ask the question-setter to explain to me exactly how the boy is able to "run". And how would he be able to remain planted on the plank after he steps on it ?

    Where is the plank sited ? Is it just lying at rest on the ice ? Or is it balanced on a fulcrum off the ground, like a see-saw ?

    Using the former interpretation, and completely neglecting friction between plank and ice, why is this even a rotational movement problem ? There would be NO point on the plank remaining at rest with respect to the ice. Assuming the boy somehow remains on the plank without friction (thereby imparting all his momentum to the plank-boy combination), the plank-boy would travel with a velocity equal to [itex]v\frac{m}{M+m}[/itex] in the same direction as the boy's initial running.
     
  5. Jun 18, 2005 #4

    OlderDan

    User Avatar
    Science Advisor
    Homework Helper

    If we give them a bit of a break on the problem statement, we could assume the boy started running before he got to the ice and just managed to keep his balance long enough the jump onto the plank, Then if we assume that "neglect friction" only applies to the plank and ice (not the plank and the boy) we potentially have a rotation problem. What we still need to know is where the boy jumps on the plank. If he jumps on the middle, you have solved the problem. If he jumps on off-center, the plank is going to rotate as well as slide, and one point initially at rest is a distinct possibility.
     
  6. Jun 18, 2005 #5

    Doc Al

    User Avatar

    Staff: Mentor

    The problem statement could be improved. I assume by "neglect friction" that they mean to neglect the friction between plank and ice, not between boy and ice (though he could be sliding at speed v) or certainly between boy and plank.
    That's the translational speed of the center of mass of the plank-boy. But the plank-boy will also rotate. So the question does make sense.

    Edit: Dan beat me again!
     
  7. Jun 19, 2005 #6

    Curious3141

    User Avatar
    Homework Helper

    Yes, I misread the question, there will be rotation.
     
  8. Jun 20, 2005 #7
    The boy jumps onn the plank at the end with contact with the ice and perpendicular to the surface.
     
  9. Jun 20, 2005 #8
    im really sorry i forgot to mention about the friction being neglected only between the plank and the ice but i do think that was OBVIOUS.Anyway you did figure that out later.
     
  10. Jun 21, 2005 #9

    OlderDan

    User Avatar
    Science Advisor
    Homework Helper

    So, the problem involves conservation of linear momentum and angular momentum. Have you solved it? If not, figure out where the center of mass (CM) of the plank and boy will be, and think about how the CM will move, with rotation about the CM.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Rotational motion problem
  1. Rotation motion problem (Replies: 30)

Loading...