1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Runge kutta 4 & N-body problem

  1. Aug 27, 2009 #1
    Hello ppl,
    I'm new here.

    I'm trying to compute RK4 for N-body problem. But after computing I'm getting strange numbers. So here are the formulas for these problem.

    Start from two differential equations of first order:

    [1] d[tex]\vec{r}[/tex]/dt = [tex]\vec{v_i}[/tex]

    [2] [tex]\frac{d\vec{v_i}}{dt}[/tex] = [tex]\gamma[/tex] [tex]\sum\frac{m_k}{r_i^{3}}[/tex] * [tex]\vec{r_i}[/tex]

    So steps are:

    [tex]\vec{k1}[/tex] = [tex]\gamma[/tex] [tex]\sum \frac{m}{\left|r_ - r_[j]\right|^2}[/tex] * dt

    [tex]\vec{l_{1}}[/tex] = [tex]\vec{v_{i}} * dt[/tex]

    [tex]\vec{k_{2}}[/tex] = [tex]\gamma[/tex] * [tex]\sum[/tex] [tex]\frac{m_{}}{\vec{(r_{} + \frac{\vec{l_{1}}}{2}}) - (r_{[j]} + \frac{\vec{l_{1}}}{2})} ^2 [/tex] *dt

    [tex]\vec{l_{2}}[/tex] = ( [tex]\vec{v_{i}} *\frac{\vec{k_{1}}}{2}[/tex]) * dt

    [tex]\vec{k_{3}}[/tex] = [tex]\gamma[/tex] * [tex]\sum[/tex] [tex]\frac{m_{}}{\vec{(r_{} + \frac{\vec{l_{2}}}{2}}) - (r_{[j]} + \frac{\vec{l_{2}}}{2})} [/tex] * dt

    [tex]\vec{l_{3}}[/tex] = ( [tex]\vec{v_{i}} *\frac{\vec{k_{2}}}{2}[/tex]) * dt


    [tex]\vec{k_{4}}[/tex] = [tex]\gamma[/tex] * [tex]\frac{m_{}{|(\vec{r_{} + \vec{l_{3}})}) - \vec{r_{} + \vec{l_{3}})} [/tex]

    [tex]\vec{l_{4}}[/tex] = ( [tex]\vec{v_{i}} *\vec{k_{3}}[/tex]) * dt
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Runge kutta 4 & N-body problem
  1. N body problem (Replies: 1)

  2. N-Body Problem - ideas? (Replies: 18)

Loading...