1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Runge-Lenz Vector

  1. Oct 28, 2011 #1
    I'm trying to prove that the time derivative of the Runge-Lenz vector is constant. Any ideas on how I would go about doing this?
     
  2. jcsd
  3. Oct 29, 2011 #2
    Any help on this?
     
  4. Oct 30, 2011 #3

    vanhees71

    User Avatar
    Science Advisor
    2016 Award

    Simply take the time derivative! The definition of the Lenz vector is

    [tex]\vec{A}=\vec{p} \times \vec{L}-m \alpha \frac{\vec{r}}{r}.[/tex]

    To show that this is conserved for the potential [itex]V(r)=-\alpha/r[/itex], we note that the angular momentum is conserved, and we have

    [tex]\vec{L}=m \vec{r} \times \dot{\vec{r}}=m r^2 \vec{\omega}=\text{const},[/tex]

    where [itex]\vec{\omega}[/itex] is the momentary angular velocity.

    Further we have

    [tex]\frac{\mathrm{d}}{\mathrm{d} t} \frac{\vec{r}}{r}=\frac{\dot{\vec{r}}}{r}-\frac{\dot{r} \vec{r}}{r^2} = \vec{\omega} \times \frac{\vec{r}}{r}[/tex]

    and

    [tex]\dot{\vec{p}}=-\vec{\nabla} V(r)=-\frac{\alpha}{r^3} \vec{r}[/tex]

    and thus

    [tex]\dot{\vec{A}}=\dot{\vec{p}} \times \vec{L}-m \alpha \vec{\omega} \times \frac{\vec{r}}{r}=-\frac{\alpha}{r^3} \vec{r} \times m r^2 \vec{\omega}-m \alpha \vec{\omega} \times \frac{\vec{r}}{r}=0.[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook