S9.3.a de with u subst

  • MHB
  • Thread starter karush
  • Start date
  • #1

karush

Gold Member
MHB
3,263
4
Solve the de $$\dfrac{dy}{dx}=\dfrac{1}{7}\sqrt{y}\cos^2{\sqrt{y}}$$
sepate variables
$$\displaystyle \dfrac{dy}{\sqrt{y}\, \cos^2{\sqrt{y}} }=\dfrac{1}{7}\, dx
\implies \int{\dfrac{{d}y}{\sqrt{y}\,\cos^2{\left(\sqrt{y} \right) }} }
= \int{ \dfrac{1}{7}\,{d}x}$$
ok i think u subst is next ... maybe...
$$u=\sqrt{y} \therefore du=\dfrac{{d}y}{2\,\sqrt{y}}$$
 
Last edited by a moderator:
  • #2
Solve the de $$\dfrac{dy}{dx}=\dfrac{1}{7}\sqrt{y}\cos^2{\sqrt{y}}$$
sepate variables
$$\displaystyle \dfrac{dy}{\sqrt{y}\, \cos^2{\sqrt{y}} }=\dfrac{1}{7}\, dx
\implies \int{\dfrac{{d}y}{\sqrt{y}\,\cos^2{\left(\sqrt{y} \right) }} }
= \int{ \dfrac{1}{7}\,{d}x}$$
ok i think u subst is next ... maybe...
$$u=\sqrt{y} \therefore du=\dfrac{{d}y}{2\,\sqrt{y}}$$
You stopped too soon! What did you get when you did the substitution?

-Dan
 
Last edited by a moderator:
  • #3
using your sub \( u = \sqrt{y} \) ...

\( \displaystyle 2 \int \dfrac{1}{\cos^2{\sqrt{y}}} \cdot \dfrac{dy}{2\sqrt{y}} = 2\int \sec^2{u} \, du \)
 

Suggested for: S9.3.a de with u subst

Replies
1
Views
753
Replies
3
Views
987
Replies
6
Views
956
Replies
3
Views
842
Replies
8
Views
3K
Replies
6
Views
1K
Replies
4
Views
742
Replies
3
Views
1K
Back
Top