Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Schrodinger's atom

  1. Oct 10, 2003 #1
    dear reader,

    I came across shrodinger's model of an atom. it said that electrons dont move. it is completely wierd and it is tough for me to get any idea of it.

    all for god
  2. jcsd
  3. Oct 10, 2003 #2


    User Avatar
    Staff Emeritus
    Gold Member
    Dearly Missed

    Yes it is tough, but it is important to wrap your mind around if you care about how the world is made.

    Stating that the electrons don't move is not quite right. What quantum mechanics says is that they dont't have a well-defined position or velocity. Their position and speed are not zero but something that is not definite and constantly changes.

    Sometimes this is visualized as a cloud, representing the probability that the electron is at some point near the nucleus. And you could form a similar cloud showing the probability that the electron has any given speed.

    If the electrons were truly little particles whirling around the nucleus like planets around the sun, then atoms wouldn't work. For circling is acceleration (basic physics) and accelerating charged particles will radiate EM waves (basic electromagnetism - see the "accelerated charges" thread up in Classical Physics). So the electrons would radiate EM. And this would give two problems:
    1) We don't see this EM radiation coming out of atoms, and
    2) The electron, by emitting that EM would lose energy, and couldn't keep up its orbit, it would spiral into the nucleus and be lost.

    Even before modern quantum mechanics was invented in the 1920s, physicsists knew about these problems and the dealt with them by "magic". Bohr said, well the electrons in their orbits just DON'T radiate, unlike every other kind of charged particle. Other physicists were uneasy about this, but whaddaya gonna do?

    Then Heisenberg, and Schroedinger, and Dirac came along and all was light. Probabilities solved the problem.
  4. Oct 13, 2003 #3

    I thought that his discovery had to do with something related to subshells of an atom
  5. Oct 13, 2003 #4


    User Avatar

    No. What Schrodinger did was to derive a mathematical treatment of quantum effects based on waves. From this, he got the uncertainty relation - that a particle cannot be said to have a well defined position and a well defined momentum at the same time, which effectively disproved the Bohr model (the electrons flying around the nucleus) there and then. By using his equations, it is possible to calculate the probability distributions of the positions of electrons of a certain energy - and the visualisations of these probability distributions we call the "shape" of the electron subshell.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook