Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Schrödinger Potential Fields with no Energy Quantisation?

  1. Apr 21, 2016 #1
    The solution to the One-Dimensional Time-Independent Schrödinger equation for an electric potential field of constant value is an exponential function, and its energy eigenvalue can have any value, it is not quantised.

    img04.gif

    Are there any other potential field functions whereby the energy of the particle is not quantised?

    Excluding the case where the potential is entirely zero, i.e. free particles.
     
  2. jcsd
  3. Apr 21, 2016 #2

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

  4. Apr 21, 2016 #3
    very interesting. I didn't know that the atom could have a continuous spectrum. Why don't we observe this?
     
  5. Apr 21, 2016 #4
    We have observed this, starting many years ago:

    "... in the exceptional case of the star AC +70 d 8247, surface gravity is about 3 million times the Earth's ... the hydrogen lines would be broadened to such an extent that they would flow together into a fairly uniform continuum of absorption. This might explain why there are white dwarfs with purely continuous spectra. According to Kuiper, AC +70 d 8247 has such continuous spectrum."

    From "White Dwarfs", Otto Struve, Sky and Telescope, December 1953
     
  6. Apr 21, 2016 #5

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    Probably some people out there have already observed this in collision experiments, but I don't know for sure. Anyway, continuum states are unbounded state. Given that an atom in reality is not floating alone in the universe, I imagine it must be hard to maintain a stable quasi-isolated hydrogen atom with positive energy without being quickly ionized.
    The continuous spectrum in the case of a star's emission sounds more like due to the usual line broadening mechanism, which is further due to a collective motion of an ensemble of atoms.
     
  7. Apr 21, 2016 #6
    blue_leaf77, you're right. Struve says it's the "broadening of spectral lines when an element is influenced by an electric field" - due to other ionized atoms and electrons in the vicinity. Not the same as the continuous-spectrum case you're referring to, but seems close enough to greswd's request for "any other potential field functions whereby the energy of the particle is not quantized" to be worth mentioning.
     
  8. Apr 21, 2016 #7

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    Ah I see, so you intended to answer the original question of the thread. I thought you were responding to grewsd's last question in post #3 where the discussion is narrowing down to the issue of an isolated H atom's continuum states.
     
  9. Apr 29, 2016 #8
    What do you mean by ionized?
     
  10. Apr 29, 2016 #9

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    It's the ionization, the liberation of an electron from an atom following the addition of energy exceeding its binding energy.
     
  11. Apr 29, 2016 #10
    Is ionization an issue when examining the spectra of a hydrogen discharge lamp?
     
  12. Apr 29, 2016 #11

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    You are drifting away from the current discussion. In post #5, I brought up ionization to present a possibility of the reason why the continuum state of hydrogen atom have been difficult to observe, I myself am not sure if there have been an observation out there that's why I also expressed my uncertainty in the same post. It has nothing to do with the spectrum of discharge lamp.

    Continuum states, by the way, are essentially not a bound state anymore and in fact they don't correspond to physically realizable state because they do not go to zero at infinities (probably I should also have added this beforehand to the possible reason of the difficulty of observing continuum states).
     
  13. Apr 29, 2016 #12
    Ok. So maybe there is possibly something added on top of the Schrödinger equation that excludes the physical possibility of continuum states?
     
  14. Apr 29, 2016 #13

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    I don't think so, the reason why continuum states are not realizable is due to the non-vanishing wavefunction at infinities, and this is a consequence of satisfying the Schroedinger equation. Nevertheless, along with the discrete, bound states, continuum states can serve as the basis function of any realizable wavefunction.
     
  15. Apr 29, 2016 #14
    How does this non-vanishing prevent an electron in this state from converting its energy into a photon?
     
  16. Apr 29, 2016 #15

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    When you say "in this state", do you mean one of the continuum state? Haven't I said that this state is not a realizable state.
     
  17. Apr 29, 2016 #16
    Yes, I was asking why the non-vanishing wavefunction prevents it from being a realizable state.
     
  18. Apr 29, 2016 #17

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    Because it's not normalizable. Pretty much like the wavefunction for a free particle.
     
  19. Apr 29, 2016 #18
    But a free particle can convert its energy into photons right?
     
  20. Apr 29, 2016 #19

    blue_leaf77

    User Avatar
    Science Advisor
    Homework Helper

    In which way, if it's alone in the universe? Moreover about the "freeness" of that electron, its wavefunction in reality does not exactly equal to that of the theoretical free particle's wavefunction.
     
    Last edited: Apr 29, 2016
  21. May 1, 2016 #20
    Good question. I don't even know how electrons in an atom lose energy, I just know that they do.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Schrödinger Potential Fields with no Energy Quantisation?
  1. Quantising Fields (Replies: 1)

Loading...