Given the equation ##\frac{d^2 \psi (x)}{{dt}^2}+\frac{2m}{{\hbar}^2}(E-V(x))=0## the general solution is:(adsbygoogle = window.adsbygoogle || []).push({});

$$\psi (x)=A_1 e^{ix \sqrt{\frac{2m}{{\hbar}^2}(E-V(x))}} +A_2 e^{-ix \sqrt{\frac{2m}{{\hbar}^2}(E-V(x))}}$$

If we have an infinite potential well: ## V(x)=\begin{cases} \infty \quad x\ge b\\ 0 \quad a < x < b \\ \infty \quad x \le a \end{cases}## then would that mean I take the limit of x to a and b and both should equal zero? So:

$$\lim_{x\rightarrow a}\left(A_1 e^{ix \sqrt{\frac{2m}{{\hbar}^2}(E-V(x))}} +A_2 e^{-ix \sqrt{\frac{2m}{{\hbar}^2}(E-V(x))}}\right)=0+\lim_{x\rightarrow a}\left( A_2 e^{x \sqrt{\frac{2m}{{\hbar}^2}(V(x)-E)}}\right)$$ where ## \lim_{x\rightarrow a}\left( A_2 e^{x \sqrt{\frac{2m}{{\hbar}^2}(V(x)-E)}}\right)## diverges. But how could that be zero? Would this mean that ##A_2## must be Zero?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Schrödinger's Equation Infinite Potential Well

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**