- #1

- 188

- 1

[tex] \delta S (< \Omega | T( \phi (x1) \phi(x2)..... \phi (xN) | \Omega >)= -\sum_{n=1}^{N}< \Omega | T( \phi (x1) \phi(x2)..i\delta (x-xi)... \phi (xN) | \Omega > [/tex]

they are the Schwinger Dyson equation for the correlation function , my question is , how could i use Wick's theorem to compute the quantity

[tex] < \Omega | T( \phi (x1) \phi(x2)..i\delta (x-xi)... \phi (xN) | \Omega > [/tex] for every 'i'

here [tex] \delta S [/tex] is the functional derivative of the action 'S'