- #1

- 99

- 0

Say you start with two cities with masses equal. Both M2. They orbit a common center of gravity with radius R. Now consider three cities with the same total mass as the first two. Do they orbit with smaller radius? What is the smallest possible orbit for unlimited number of cities with total mass equal the original total mass? Surely it has something to do with the gravitational constant, G and is some simple function of our total mass!?