- 17

- 0

## Main Question or Discussion Point

When I do some physics derivation, I find that on a seesaw, if the object is farther away from the fulcrum, the angular acceleration decreases. Is this true? If not, where did I go wrong?

[tex]\tau = I \cdot \alpha[/tex]

[tex]\tau=F \cdot r[/tex]

Then, [tex]\alpha = \frac{F \cdot r}{I} = \frac{F_g \cdot r}{mr^2}=\frac{g \cdot m \cdot r}{mr^2}=\frac{g}{r}[/tex], so if the distance "r" increases, angular acceleration decreases...did I do something wrong?

[tex]\tau = I \cdot \alpha[/tex]

[tex]\tau=F \cdot r[/tex]

Then, [tex]\alpha = \frac{F \cdot r}{I} = \frac{F_g \cdot r}{mr^2}=\frac{g \cdot m \cdot r}{mr^2}=\frac{g}{r}[/tex], so if the distance "r" increases, angular acceleration decreases...did I do something wrong?

Last edited: