1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Semiconductor Question

  1. Oct 24, 2007 #1
    1. The problem statement, all variables and given/known data
    The donor state for tellurium (Te) in GaAs is 5.9 meV below the conduction band [tex](E=E_{c})[/tex]. At room temperature, what fraction of the states are empty if the Fermi energy lies 0.1 eV below [tex]E_{c}[/tex]

    2. Relevant equations
    [tex]E_{c}|_{GaAs}= 1.42eV[/tex]
    [tex]E_{d}= [/tex]
    [tex]E_{F}= [/tex]
    [tex]kT|_{(T=300K)}=0.02585 eV[/tex]
    [tex]N_{c}|_{(GaAs)} = 1.04\times10^{19}cm^{-3} [/tex]

    [tex]E_{d}[/tex] is the Donor Energy Level
    [tex]E_{f}[/tex] is the Fermi Energy
    [tex]T[/tex] is the Temperature
    [tex]k[/tex] is the Wave Number
    [tex]n_{d}[/tex] is the Density of Electrons in the Donor Energy Level
    [tex]N_{c}[/tex] is the Effective Density of States in the Conduction Band

    [tex]n_{d} = 1 + \frac{1}{2}exp[\frac{(E_{c}-E_{d})-(E_{c}-E_{F})}{kT}][/tex]

    3. The attempt at a solution

    Ok, so here goes:
    [tex]n_{d} = 1 + \frac{1}{2}exp[\frac{( eV - eV) - ( eV - eV)}{0.02585eV}][/tex]

    [tex]n_{d} = 1 + \frac{1}{2}exp[\frac{ eV - eV}{0.02585eV}][/tex]

    [tex]n_{d} = 1 + \frac{1}{2}exp[\frac{ eV}{0.02585eV}][/tex]

    [tex]n_{d} = 1 + \frac{1}{2}exp[-3.64023][/tex]

    [tex]n_{d} = 1 + \frac{1}{2}(0.026246)[/tex]

    [tex]n_{d} = 1 + (.013123)[/tex]

    [tex]n_{d} = 1.013123 cm^{-3}[/tex]
    Last edited: Oct 25, 2007
  2. jcsd
  3. Oct 25, 2007 #2
    Disregard this post. Sorry.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook