I am using the text by Farlow to study elementary methods of solving PDEs, and there is a point in his illustration of separation of variables where I am not seeing something. I am clear on everything that comes after and before this point, but after having returned to a certain step a few times I still don't see its justification.(adsbygoogle = window.adsbygoogle || []).push({});

PDE: $$ u_t = \alpha^2u_{xx}$$ $$0 < x < 1 $$ $$0 < t < \infty $$

BCs: $$ u(0, t) = 0, u(1, t) = 0$$

$$0 < t < \infty $$

IC: $$u(x, 0) = \phi(x)$$

$$ 0 \leq x \leq 1 $$

We assume a solution to the PDE of the form $$u(x, t) = X(x)T(t)$$ and ultimately reduce our original second order partial differential equation into two ordinary differential equations, one first order and one second order:

$$ T' - k\alpha^2T = 0 $$

$$X'' - kX = 0$$

Here, Farlow says "[w]e now make an important observation, namely, that we want the separation constantkto benegative(or else the T(t) factor doesn't go to zero as t → ∞). With this in mind, it is general practice to rename $$k = -\lambda^2$$ where lambda is nonzero." (pp35-36)

I understand that since k is an arbitrary constant we can manipulate it as we see fit depending on what would be most convenient in the physical system under study. In this case we are studying a heat diffusion problem through a rod of fixed length with heat sinks at either end and some initial temperature φ(x).

What I'm confused about is why we should want the T(t) factor to go to zero as t → ∞ -- is this somehow required by the boundary or initial conditions?

I'm clear on how to proceed from this point and how to arrive at the solution which is a Fourier sine expansion, but the reasoning/justification behind that particular step of changing the constant wasn't clear to me.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Separation of Variables in PDEs

Loading...

Similar Threads - Separation Variables PDEs | Date |
---|---|

A Solving a PDE in four variables without separation of variables | Dec 11, 2017 |

I Separation of variables for nonhomogeneous differential equation | Aug 23, 2017 |

B Separation of variables - rocket equation | Nov 27, 2016 |

Separation of variables PDEs | Oct 19, 2015 |

PDEs: Separation of variables | Apr 23, 2011 |

**Physics Forums - The Fusion of Science and Community**