This is problem 13.3 from Rudin's Real and Complex analysis. It is not homework.(adsbygoogle = window.adsbygoogle || []).push({});

Is there a sequence of polynomials {Pn} such that Pn(0) = 1 for n = 1,2,3,... but Pn(z) -> 0 for all z != 0 as n -> infinity?

My guess here is no. Sketch of proof: Assume such a sequence existed. Then we should be able to contradict the maximum modulus theorem for any disk around 0 since all Pn(z) for |z| = r will be approaching 0 for large enough n, but Pn(0) = 1.

Is this correct?

thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Sequence of complex polynomials

**Physics Forums | Science Articles, Homework Help, Discussion**