1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Series (is this correct?)

  1. Oct 1, 2004 #1
    [tex] \textrm{Is this correct? Thanks.} [/tex] :smile:

    [tex] s = \sum _{n=1} ^{\infty} \frac{\left( n+1 \right)^2}{n \left( n+2 \right)} [/tex]​

    [tex] \textrm{This is not a geometric series, so we go back to the definition of a convergent series and compute the partial sums.} [/tex]

    [tex] s_n = \sum _{i=1} ^n \frac{\left( i+1 \right)^2}{i\left( i+2 \right)} [/tex]​

    [tex] \textrm{We can simplify this expression if we use the partial fraction decomposition} [/tex]

    [tex] \frac{\left( i+1 \right)^2}{i\left( i+ 2 \right)} = \frac{\frac{1}{2}\left( i+1 \right)^2}{i} - \frac{\frac{1}{2}\left( i+1 \right)^2}{i+2}. [/tex]​

    [tex] \textrm{Thus, we have} [/tex]

    [tex] s_n = \frac{1}{2} \sum _{i=1} ^n \left[ \frac{\left( i+1 \right)^2}{i} - \frac{\left( i+1 \right)^2}{i+2} \right] [/tex]​

    [tex] s_n = \frac{1}{2} \left[ \left( 2^2 - \frac{2^2}{3} \right)+ \left( \frac{3^2}{2} - \frac{3^2}{4} \right) + \left( \frac{4^2}{3} - \frac{4^2}{5} \right) + \left( \frac{5^2}{4} - \frac{5^2}{6} \right) + \left( \frac{6^2}{5} - \frac{6^2}{7} \right) + \left( \frac{7^2}{6} - \frac{7^2}{8} \right) + \cdots + \frac{\left( n+1 \right)^2}{n} - \frac{\left( n+1 \right)^2}{n+2} \right] [/tex]​

    [tex] s_n = \frac{1}{2} \left\{ \left( 2^2 + \frac{3^2}{2} \right)+ \left( \frac{4^2}{3} - \frac{2^2}{3} \right) + \left( \frac{5^2}{4} - \frac{3^2}{4} \right) + \left( \frac{6^2}{5} - \frac{4^2}{5} \right) + \left( \frac{7^2}{6} - \frac{5^2}{6} \right) + \left( \frac{8^2}{7} - \frac{6^2}{7} \right) + \cdots + \left[ \frac{\left( n+1 \right)^2}{n} - \frac{\left( n-1 \right)^2}{n} \right] - \frac{\left( n+1 \right)^2}{n+2} \right\} [/tex]​

    [tex] s_n = \frac{1}{2} \left[ \frac{17}{2} + 4\left( n - 2 \right) - \frac{\left( n+1 \right)^2}{n+2} \right] [/tex]​

    [tex] s_n = \frac{1}{2} \left( \frac{17}{2} + \frac{3n^2 -2n -17}{n+2} \right) [/tex]​

    [tex] s_n = \frac{17}{4} + \frac{3n^2 -2n -17}{2n+4} [/tex]​

    [tex] \textrm{and so} [/tex]

    [tex] s = \lim _{n \to \infty} s_n = \frac{17}{4} + \lim _{n \to \infty} \frac{3n^2 -2n -17}{2n+4} [/tex]​

    [tex] s = \frac{17}{4} + \lim _{n \to \infty} \frac{3n - 2 - \frac{17}{n}}{2+\frac{4}{n}}=\infty . [/tex]​

    [tex] \textrm{Therefore, the given series diverges.} [/tex]
  2. jcsd
  3. Oct 1, 2004 #2
    In my opinion, you shouldn't go that way, because (n+1)^2=n^2+2n+1
    this means the formula in that SUM becomes 1+1/(n^2+2n), but sum of 1 till it comes to infinity is always infinite, so the second part [1/(n^2+2n)] can be ignored immediately. The conclusion is then infinity.
  4. Oct 1, 2004 #3
    [tex] \textrm{I see what you mean} [/tex]

    [tex] s = \sum _{n=1} ^{\infty} \frac{\left( n+1 \right)^2}{n \left( n+2 \right)} = \sum _{n=1} ^{\infty} \left[ 1 + \frac{1}{2n} - \frac{1}{2 \left( n + 2 \right) } \right] = \infty .[/tex]​

    [tex] \textrm{Therefore, the series diverges.} [/tex]

    [tex] \textrm{That's certainly simpler. Thanks.} [/tex]
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook