Series representation help

  • Thread starter rman144
  • Start date
  • #1
35
0
Does anyone know of a series representation for:

[tex]\frac{sin(x)}{cos(x)+cosh(x)}[/tex]

Preferably valid for 0<x, but any ideas or assistance on any domain would be much appreciated.
 

Answers and Replies

  • #2
Do a taylor series, for sin(x), cos(x), cosh(x), 1/x, then compose them and use the multinational theorm.
 
  • #3
zcd
200
0
[tex]\sin(x)=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}[/tex]
[tex]\cos(x)=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{2n}}{(2n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...[/tex]
[tex]\cosh(x)=\sum_{n=0}^{\infty}\frac{x^{2n}}{(2n)!}1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+...[/tex]

You could cancel some of the terms on denominator to get [tex]1+\frac{x^{4}}{4!}+\frac{x^{8}}{8!}+...=\sum_{n=0}^{\infty}\frac{x^{4n}}{(4n)!}[/tex] and then do long division.

Wolfram Alpha gives
[tex]\frac{x}{2}-\frac{x^{3}}{12}+\frac{x^{5}}{60}-\frac{17x^{7}}{5040}+\frac{31x^{9}}{45360}-\frac{691x^{11}}{4989600}+...[/tex]
 
Last edited:
  • #4
607
0
And Maple disagrees in some signs...
[tex]{\frac {\sin \left( x \right) }{\cos \left( x \right) +\cosh \left( x
\right) }} = {\frac {1}{2}}x-{\frac {1}{12}}{x}^{3}-{\frac {1}{60}}{x}^{5}+{\frac
{17}{5040}}{x}^{7}+{\frac {31}{45360}}{x}^{9}-{\frac {691}{4989600}}{x
}^{11}+O \left( {x}^{12} \right)
[/tex]
 

Related Threads on Series representation help

  • Last Post
Replies
3
Views
3K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
13
Views
2K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
5
Views
3K
Replies
2
Views
2K
Top