Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Serious Math help needed =-(

  1. Nov 27, 2005 #1
    I'm trying to find the area for the Koch Snowflake.... I cant really figure it out... I found a couple of equations online (I cant really understand how most work.. or how they have been "derived".. including the mathworld one)

    I'm looking at the following formula (seems to work.. but I cant figure out the (1-(4/9)^n)/(1-4/9) part.. something to do with an infinite geometric series right?

    (sqr(3))/4) + [ ((sqr(3)/12 )) * (1-(4/9)^s)) ] / (1-4/9)

    (sorry I could not figure out the pretty print stuff either.)
    s = stage of snowflake/fractal, starting from 0
  2. jcsd
  3. Nov 27, 2005 #2
    oops.. sorry about the other thread.. oh well
  4. Nov 28, 2005 #3


    User Avatar
    Science Advisor

    Yes, that is the sum, from i= 0 to n-1, of (4/9)^i

    Uh, that's not an equation! There is no "=". I'm not sure what you want to do with it. Add the two fractions? If so, then, of course, 1- 4/9= 5/9 so "(1-(4/9)^s/(1- 4/9)" is
    [tex] \frac{1-\left(\frac{4}{9}\right)^s}{1- \frac{4}{9}}= \frac{1-\left(\frac{4}{9}\right)^s}{5/9}= \frac{9(1-\left(\frac{4}{9}\right)^s)}{4}[/tex]
    I come out with, for the whole thing,
    [tex]\frac{\sqrt{3}+ \frac{3\sqrt{3}}{4}\left(1- \frac{4}{9}\right)^s}{4}[/tex]

    Double click on the "pretty print" (Latex) to see the code.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook