Is there anyway to prove that if I have (m is the lebesgue measure) m(A\B) is finite, then m(A) is finite? It seems intuitive to me, but I'm having trouble coming up with rigorous mathematical reasoning for it. B is completely contained within A. If there's anything else that might clarify this, let me know, because this is bugging me. Thanks for any help that you can offer.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Set Minus function

Loading...

Similar Threads - Minus function | Date |
---|---|

I Integrate a function over a closed circle-like contour around an arbitrary point on a torus | Saturday at 12:51 PM |

B Function rules question | Saturday at 9:49 AM |

I Looking for additional material about limits and distributions | Feb 17, 2018 |

L'Hôpital's rule for infinity minus infinity | Oct 16, 2011 |

Minus signs | Sep 9, 2007 |

**Physics Forums - The Fusion of Science and Community**