1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Sharing knowledge

  1. Dec 14, 2007 #1
    Some time ago I had to do a calculation concerning a physical problem. In this calculation some integrals were needed to be solved and the method on how to do this was briefly described. I was able to solve the problem completely and found the method so beautiful that I would like to share it with all of you. Consider the following integrals:

    [tex]\int \frac{1}{1+\epsilon \cdot cos \theta}d\theta[/tex]

    [tex]\int \frac{1}{\left(1+\epsilon \cdot cos \theta\right)^2}d\theta[/tex]

    [tex]\int \frac{1}{\left(1+\epsilon \cdot cos \theta\right)^3}d\theta[/tex]

    [tex]\int \frac{cos \theta}{1+\epsilon \cdot cos \theta}d\theta[/tex]

    [tex]\int \frac{cos \theta}{\left(1+\epsilon \cdot cos \theta\right)^2}d\theta[/tex]

    [tex]\int \frac{cos \theta}{\left(1+\epsilon \cdot cos \theta\right)^3}d\theta[/tex]

    [tex]\int \frac{sin \theta}{1+\epsilon \cdot cos \theta}d\theta[/tex]

    [tex]\int \frac{sin \theta}{\left(1+\epsilon \cdot cos \theta\right)^2}d\theta[/tex]

    [tex]\int \frac{sin \theta}{\left(1+\epsilon \cdot cos \theta\right)^3}d\theta[/tex]

    Some of these are straightforward, but some are not. In order to solve the non trivial ones in a systematic way, one can use the following substitution:

    [tex]1+\epsilon \cdot cos \theta = \frac{1-\epsilon^2}{1-\epsilon \cdot cos \gamma}[/tex]


    [tex]0\leq \theta \leq 2\pi[/tex]

    [tex]0\leq \gamma \leq 2\pi[/tex]

    The following relations can be obtained:

    [tex]cos \theta = \frac{cos \gamma -\epsilon}{1-\epsilon \cdot cos \gamma}[/tex]

    [tex]sin \theta = \frac{\sqrt{1-\epsilon^2} sin \gamma}{1-\epsilon \cdot cos \gamma}[/tex]

    [tex]cos \gamma = \frac{\epsilon +cos \theta}{1+\epsilon \cdot cos \theta}[/tex]

    [tex]sin \gamma = \frac{\sqrt{1-\epsilon^2} sin \theta}{1+\epsilon \cdot cos \theta}[/tex]

    [tex]d \theta = \frac{\sqrt{1-\epsilon^2}}{1-\epsilon \cdot cos \gamma}d \gamma[/tex]

    [tex]d \gamma = \frac{\sqrt{1-\epsilon^2}}{1+\epsilon \cdot cos \theta}d \theta[/tex]

    After rewriting some of the integrals into smaller ones, substituting this and rearranging it is possible to solve them in a fairly easy way. As an example, let's take the one before the last, it was:

    [tex]\int \frac{sin \theta}{\left(1+\epsilon \cdot cos \theta\right)^2}d\theta[/tex]

    Using the substitution we get:

    [tex]\int \frac{sin \gamma}{1-\epsilon^2}d\gamma=\frac{-cos \gamma}{1-\epsilon^2}+C[/tex]

    The solution is now obtained by substituting either

    [tex]\gamma = arccos \left( \frac{\epsilon +cos \theta}{1+\epsilon \cdot cos \theta} \right)[/tex]


    [tex]\gamma = arcsin \left( \frac{\sqrt{1-\epsilon^2} sin \theta}{1+\epsilon \cdot cos \theta} \right)[/tex]

    This substitution is called the "Sommerfeld substitution" after the "inventor" and is one of the nicest substitutions I've ever encountered for solving integrals in the real with "classical" functions. I hope this is helpful in solving other types of integrals you might be working on.

    best regards,

  2. jcsd
  3. Feb 10, 2008 #2
    your information was very useful thanks
  4. Mar 14, 2008 #3
    very nice
    and very useful
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?