- #1

- 22

- 0

Find the volume of the object created by rotating an equilateral triangle around its base. Solve using both shells and cylinders.

Any help would be appreciated :)

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter youxcrushxme
- Start date

- #1

- 22

- 0

Find the volume of the object created by rotating an equilateral triangle around its base. Solve using both shells and cylinders.

Any help would be appreciated :)

- #2

- 12

- 0

Firstly you have to determine the radius of the circunference who contains the triangle. ( see the graphic below)

- triangle is an equilateral triangle, because that the angles are 180/3= 60º

If we draw the radius we have half angle ; 60/ 2 = 30 º

Whe aply trigonometry :

Cos 30 = (side/2)/ Radius --> Here you have only one unknown (radius)

Now, yo have by rotation generated circunference Radius, and the volume of the piece will be :

V = Pi*(R)^2*H

- triangle is an equilateral triangle, because that the angles are 180/3= 60º

If we draw the radius we have half angle ; 60/ 2 = 30 º

Whe aply trigonometry :

Cos 30 = (side/2)/ Radius --> Here you have only one unknown (radius)

Now, yo have by rotation generated circunference Radius, and the volume of the piece will be :

V = Pi*(R)^2*H

- #3

mjsd

Homework Helper

- 726

- 3

mmm... where is the axis of rotation that creates the volume?

Share: