Hello! I have this problem f'(x)=f(2-x) and I need to find f. This is what I did(adsbygoogle = window.adsbygoogle || []).push({});

x -> 2-x

f'(2-x)=f(2-2+x)=f(x) => f''(x)=f'(2-x)=f(x) => f''(x)=f(x) => ##f(x)=c_1e^x+c_2e^{-1}##.

So, ##c_1e^x-c_2e^{-x}=c_1e^{2-x}+c_2e^{x-2}## => ##-c_2e^{-x}=c_1e^2e^{-x}## => ##-c_2=c_1e^2##. And, similarly, ##c_1=c_2e^{-2}##. So ##-c_2=c_2e^2e^{-2}## => ##c_2=c_1=0## => f(x)=0.

Is this correct? There is another solution? Thank you!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# B Short check on solved ODE problem

Have something to add?

Draft saved
Draft deleted

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**