(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Consider following transformation: Transformation: $$X^{\mu}\rightarrow \tilde{X^{\mu}}= X^{\mu}+\xi^{\mu}(\eta, \vec{x})$$

where ##\xi^0=T, \xi^i=L_i##

Show transformation of metric perturbation ##B_i\rightarrow \tilde{B_i}=B_i+\partial_iT-\partial_{\eta}L_i##

2. Relevant equations

Perturbed metric: $$ds^2=a^2(\eta)[(1+2A)d\eta-2B_idx^id\eta-(\delta_{ij}+h_{ij})dx^idx^j]$$

$$g_{\mu\nu}(X)=\frac{\partial \tilde{X^{\alpha}}}{\partial X^{\mu}}\frac{\partial \tilde{X^{\beta}}}{\partial X^{\nu}}\tilde{g_{\alpha\beta}}(\tilde{X})$$

where ##\tilde{g_{\alpha\beta}}(\tilde{X})## is metric in new coordinates.

3. The attempt at a solution

$$g_{0i}(X)=\frac{\partial \tilde{X^{\alpha}}}{\partial \eta}\frac{\partial \tilde{X^{\beta}}}{\partial X^{i}}\tilde{g_{\alpha\beta}}(\tilde{X})$$

$$\frac{\partial \tilde{X^{\alpha}}}{\partial \eta}\frac{\partial \tilde{X^{\beta}}}{\partial X^{i}}\tilde{g_{\alpha\beta}}(\tilde{X})=\frac{\partial \tilde{X^{0}}}{\partial \eta}\frac{\partial \tilde{X^{0}}}{\partial X^{i}}\tilde{g_{00}}(\tilde{X})+\frac{\partial \tilde{X^{0}}}{\partial \eta}\frac{\partial \tilde{X^{i}}}{\partial X^{i}}\tilde{g_{0i}}(\tilde{X})+\frac{\partial \tilde{X^{i}}}{\partial \eta}\frac{\partial \tilde{X^{0}}}{\partial X^{i}}\tilde{g_{i0}}(\tilde{X})+\frac{\partial \tilde{X^{i}}}{\partial \eta}\frac{\partial \tilde{X^{j}}}{\partial X^{i}}\tilde{g_{ij}}(\tilde{X})$$

$$\frac{\partial \tilde{X^{\alpha}}}{\partial \eta}\frac{\partial \tilde{X^{\beta}}}{\partial X^{i}}\tilde{g_{\alpha\beta}}(\tilde{X})=(1+\partial_{\eta}T)\partial_iT\tilde{g_{00}}(\tilde{X})+(1+\partial_{\eta}T)(1+\partial_iL^i)\tilde{g_{0i}}(\tilde{X})+(\partial_{\eta}X^i+\partial_{\eta}L^i)\partial_iT\tilde{g_{i0}}(\tilde{X})+(\partial_{\eta}X^i+\partial_{\eta}L^i)(\delta^{ij}+\partial_{i}L^j)\tilde{g_{ij}}(\tilde{X})=(1+\partial_{\eta}T)\partial_iTa^2(\eta+T)(1+2\tilde{A})-2(1+\partial_{\eta}T)(1+\partial_iL^i)a^2(\eta+T)\tilde{B_i}-2(\partial_{\eta}X^i+\partial_{\eta}L^i)\partial_iTa^2(\eta+T)\tilde{B_i}-(\partial_{\eta}X^i+\partial_{\eta}L^i)(\delta^{ij}+\partial_{i}L^j)a^2(\eta+T)(\delta_{ij}+\tilde{h_{ij}})$$

I don't see how to get the answer because at first order I get ##2B_i## and don't see how to get ##\partial_{\eta}L^i##. Could anyone give me a hint how to get the answer?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Show metric perturbation transformation

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**