Show that A is identical

  • MHB
  • Thread starter evinda
  • Start date
  • #1
evinda
Gold Member
MHB
3,836
0
Hello! (Wave)

I want to prove that if a $m \times m$ matrix $A$ has rank $m$ and satisfies the condition $A^2=A$ then it will be identical.

$A^2=A \Rightarrow A^2-A=0 \Rightarrow A(A-I)=0$.

From this we get that either $A=0$ or $A=I$.

Since $A$ has rank $m$, it follows that it has $m$ non-zero rows, and so it cannot be $0$.

Thus $A=I$. Is everything right? Or could something be improved? (Thinking)
 

Answers and Replies

  • #2
I like Serena
Homework Helper
MHB
16,350
256
Hello! (Wave)

I want to prove that if a $m \times m$ matrix $A$ has rank $m$ and satisfies the condition $A^2=A$ then it will be identical.

$A^2=A \Rightarrow A^2-A=0 \Rightarrow A(A-I)=0$.

From this we get that either $A=0$ or $A=I$.

Hey evinda!

I don't think we can draw that conclusion.
Consider $A=\begin{pmatrix}1&0\\1&0\end{pmatrix}$, what is $A(A-I)$? (Worried)
 
  • #3
evinda
Gold Member
MHB
3,836
0
Hey evinda!

I don't think we can draw that conclusion.
Consider $A=\begin{pmatrix}1&0\\1&0\end{pmatrix}$, what is $A(A-I)$? (Worried)

It is $0$ although neither $A$ nor $A-I$ is $0$.

How else can we get to the conclusion that $A=I$ ? (Thinking)

Do we use the linear independence? (Thinking)
 
  • #4
I like Serena
Homework Helper
MHB
16,350
256
It is $0$ although neither $A$ nor $A-I$ is $0$.

How else can we get to the conclusion that $A=I$ ?

Do we use the linear independence?

How about multiplying by $A^{-1}$?
$A$ is invertible isn't it? (Thinking)
 
  • #5
evinda
Gold Member
MHB
3,836
0
How about multiplying by $A^{-1}$?
$A$ is invertible isn't it? (Thinking)

So is it as follows? (Thinking)

Since the rank of the $m\times m$ matrix $A$ is $m$ we have that at the echelon form the matrix has no zero-rows. This implies that at the diagonal all elements are different from zero and this implies that the determinant is different from zero, since the determinant is equal to the product of the diagonal elements. Since the determinant is not equal to zero, the matrix is invertible. So $A^{-1}$ exists.

Thus $A^2-A=0 \Rightarrow A(A-I)=0 \Rightarrow A^{-1}A(A-I)=0 \Rightarrow A-I=0 \Rightarrow A=I$.

Is it complete now? Could we improve something? (Thinking)
 
  • #6
I like Serena
Homework Helper
MHB
16,350
256
So is it as follows?

Since the rank of the $m\times m$ matrix $A$ is $m$ we have that at the echelon form the matrix has no zero-rows. This implies that at the diagonal all elements are different from zero and this implies that the determinant is different from zero, since the determinant is equal to the product of the diagonal elements. Since the determinant is not equal to zero, the matrix is invertible. So $A^{-1}$ exists.

Thus $A^2-A=0 \Rightarrow A(A-I)=0 \Rightarrow A^{-1}A(A-I)=0 \Rightarrow A-I=0 \Rightarrow A=I$.

Is it complete now? Could we improve something?

All good. (Nod)

It may suffice to simply state that an $m\times m$ matrix of rank $m$ is invertible though.
It's a property of matrices:
If A is a square matrix (i.e., m = n), then A is invertible if and only if A has rank n (that is, A has full rank).
(Nerd)
 
  • #7
evinda
Gold Member
MHB
3,836
0
All good. (Nod)

It may suffice to simply state that an $m\times m$ matrix of rank $m$ is invertible though.
It's a property of matrices:
If A is a square matrix (i.e., m = n), then A is invertible if and only if A has rank n (that is, A has full rank).
(Nerd)

I see... Thanks a lot! (Party)
 

Suggested for: Show that A is identical

  • Last Post
Replies
0
Views
416
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
13
Views
1K
  • Last Post
Replies
4
Views
560
  • Last Post
Replies
2
Views
736
Replies
4
Views
613
Replies
19
Views
3K
Replies
3
Views
572
Replies
12
Views
841
Top