- #1

Redwaves

- 134

- 7

- Homework Statement
- A ball is thrown with initial speed ##V_0## up an inclined plane. The plane is inclined at an angle ##\phi## above the horizontal, and the ball's initial velocity is at an angle ##\theta## above the plane. Choose axes with x measured up the slope, y normal to the slope.

- Relevant Equations
- ##R = \frac{2v_0^2 sin \theta cos(\theta + \phi)}{g cos^2 \phi}##

##V_x = V_0 cos \theta ##

##x = V_0 cos \theta t##

##V_y = V_0 cos \theta ##

##y = V_0 cos \theta t##

##F_x = m\ddot{x}##

##-mgsin \phi = m\ddot{x}##

##\dot{x} = -gtsin\phi + V_x##

##x = -\frac{1}{2} gt^2 sin \phi + V_x t##

##x = -\frac{1}{2} gt^2 sin \phi + v_0 cos\theta t##

##F_y = m\ddot{y}##

##-mgcos \phi = m\ddot{y}##

##\dot{y} = -gtcos\phi + V_y##

##y = -\frac{1}{2} gt^2 cos \phi + V_y t##

##y = -\frac{1}{2} gt^2 cos \phi + v_0 sin \theta t##

I don't see where ##R## comes from.

##x = V_0 cos \theta t##

##V_y = V_0 cos \theta ##

##y = V_0 cos \theta t##

##F_x = m\ddot{x}##

##-mgsin \phi = m\ddot{x}##

##\dot{x} = -gtsin\phi + V_x##

##x = -\frac{1}{2} gt^2 sin \phi + V_x t##

##x = -\frac{1}{2} gt^2 sin \phi + v_0 cos\theta t##

##F_y = m\ddot{y}##

##-mgcos \phi = m\ddot{y}##

##\dot{y} = -gtcos\phi + V_y##

##y = -\frac{1}{2} gt^2 cos \phi + V_y t##

##y = -\frac{1}{2} gt^2 cos \phi + v_0 sin \theta t##

I don't see where ##R## comes from.

Last edited: