- #1

- 1,629

- 1

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter mr_coffee
- Start date

- #1

- 1,629

- 1

- #2

quasar987

Science Advisor

Homework Helper

Gold Member

- 4,784

- 18

- #3

Astronuc

Staff Emeritus

Science Advisor

- 19,959

- 3,490

a

remember

then regroup and show something similar to

a * b = b * a

and this can be extended to 3 dimensions

- #4

- 117

- 0

as such

[tex]

\vec{a}\bullet\vec{b}=

\left(

\begin{array}{cc}

a_x \\

a_y\\

a_z

\end{array}

\right)

\bullet

\left(

\begin{array}{cc}

b_x \\

b_y\\

b_z

\end{array}

\right)

=a_xb_x + a_yb_x + a_zb_z

[/tex]

so, what is [tex]\vec{b}\bullet\vec{a}[/tex]?

- #5

- 1,629

- 1

[tex]

\vec{b}\bullet\vec{a}=

\left(

\begin{array}{cc}

b_x \\

b_y\\

b_z

\end{array}

\right)

\left(

\begin{array}{cc}

a_x \\

a_y\\

a_z

\end{array}

\right)

\bullet

=b_xa_x + b_xa_y + b_za_z

[/tex]

- #6

Doc Al

Mentor

- 45,248

- 1,598

[tex]\vec{b}\bullet\vec{a} = \vec{a}\bullet\vec{b}[/tex]

Evaluate each side and compare. Make use of the commutivity of ordinary addition, as quasar987 advised.

Share: