How would I show that two groups are isomorphic?(adsbygoogle = window.adsbygoogle || []).push({});

FOR EXAMPLE:

Take the group homomorphism φ : ((0, oo), x) → ((0, oo), x) defined by φ (x) = x²

Since φ is taking any element in (0, oo) and operating on it by x, does it map one-to-one and onto to (0, oo)?

I assume by showing that two groups are isomorphic you have to show that there is a one-to-one correspondence and that they are onto (ie. the two groups are a bijection).

Would I start by taking some element a of ((0, oo), x) and then say that under x, a is mapped to a². Then for all a, a² is in (0, oo) hence it is one-to-one. Then show that there is only one a that maps to a² in (0, oo) hence it is onto. Since it is both then it is isomorphic.

Any help would be appreciated.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Showing Two Groups are Isomorphic

Loading...

Similar Threads - Showing Groups Isomorphic | Date |
---|---|

I For groups, showing that a subset is closed under operation | Feb 20, 2017 |

I A p-primary group G that is not divisible -- Show that <y> is pure in G. | Feb 9, 2017 |

How to show an isomorphism between groups? | Feb 20, 2012 |

Showing that a map from factor group to another set bijective | Oct 19, 2011 |

Show that all simple groups of order 60 are isomorphic to A5. | Nov 8, 2010 |

**Physics Forums - The Fusion of Science and Community**