(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A large bell is hung from a wooden beam so it can swing back and forth with negligible friction. The center of mass of the bell is 0.65m below the pivot, the bell has mass 37.0 Kg, and the moment of inertia of the bell about an axis at the pivot is 19.0 kg*m^2. The clapper is a small, 1.8 kg mass attached to one end of a slender rod that has length L and negligible mass. The other end of the rod is attached to the inside of the bell so it can swing freely about the same axis as the bell.

a)What should be the length of the clapper rod for the bell to ring silently-that is, for the period of oscillation for the bell to equal that for the clapper?

2. Relevant equations

T_{bell}=2pisqrt(I/mgd)

3. The attempt at a solution

okay so we have to have T_{bell}=T_{Clapper}

T_{bell}=2pisqrt(I/mgd)=2pisqrt(19/37*9.8*0.65)=1.784 s

1.784=T_{Clapper}=2pisqrt(I/mgd)

(1.748^2*g)/2pi=L=4.96m

Now I still have the wrong answer with this method, could someone please help me determine waht I'm doing wrong, as always any help is appreciated.

**Physics Forums - The Fusion of Science and Community**

# Silent Ringing Bell

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Silent Ringing Bell

Loading...

**Physics Forums - The Fusion of Science and Community**