Calculating the Period of Oscillation for a Mass Attached to a Spring

In summary: The restoring force on the left sub-spring is 1600xN, and the restoring force on the right sub-spring is 0xN.In summary, the mass oscillates for a period of 1.5 seconds.
  • #1
Panphobia
435
13

Homework Statement


Mass = 2.4 kg
spring constant = 400 N/m
equilbrium length = 1.5
The two ends of the spring are fixed at point A, and at point B which is 1.9m away from A. The 2.4 kg mass is attached to the midpoint of the spring, the mass is slightly disturbed. What is the period of oscillation?


The Attempt at a Solution


So in this question the spring is stretching by .4m just to get from A to B, but then it is also being stretched and compressed when it oscillates, how would I incorporate that into my calculation? Also since the mass is in the middle would this change anything?
 
Physics news on Phys.org
  • #2
A spring with a mass in the middle can be modeled as a mass between two springs.
 
  • #3
These springs have the constant 400, or 200 each?
 
  • #4
Recall the formulas for springs connected in series and in parallel. What is the case here?
 
  • #5
So the total spring constant is going to be the constant of those two springs added together, which is going to be 400(the original constant)? If this is the case than under the circumstance that the springs are not initially stretched past equilibrium ω = √((k1+k2)/m) and ωT = 2∏, but they are stretched, so this does make a difference but in what?
 
  • #6
It seems to me you are jumping to conclusions. Don't.

What is the spring constant of each sub-spring?

Then, let x = 0 be the position of the mass at the "loaded" equilibrium, i.e., the original spring is stretched between A and B, and the mass is stationary in the middle. What is the force due each sub-spring at the loaded equilibrium?

Finally, let the mass be shifted a bit, so x is not zero. Again, what are the forces?
 
  • #7
Loaded Equilibrium F = 0 for each sub-spring
Shifted F = 40 N for each sub-spring
 
  • #8
Panphobia said:
Loaded Equilibrium F = 0 for each sub-spring

How is that possible? At the loaded equilibrium, the entire spring is stretched, and so are the sub-springs.

Shifted F = 40 N for each sub-spring

The force is constant no matter what the shift is? How?

You did not answer the question about the spring constant for sub-springs.
 
  • #9
Oh I didn't understand how you phrased it, you said x = 0, and I immediately thought F = -kx = 0, sorry. But the spring constant for the sub-springs will be the original/2. So k1 = 200 N/m and k2 = 200 N/m.
 
  • #10
Panphobia said:
But the spring constant for the sub-springs will be the original/2. So k1 = 200 N/m and k2 = 200 N/m.

No, that is not correct. How did you obtain that?
 
  • #11
I heard my professor say, when a spring is cut in half, its spring constant is cut in half too, so if that is wrong then maybe he made a mistake, but I probably misheard. Is it doubled?
 
  • #12
Yes, it is doubled and here is why. Assume you have two identical springs with constant k, connected to each other so they form a bigger compound spring. If one is stretched by d, it exerts F = kd on the other spring, and that force makes it stretch by F/k = d, too. So the compound spring is stretched by 2d, yet it exerts F, hence its constant is K = F/(2d) = (kd)/(2d) = k/2. In your case, the "compound" spring is the original spring, so the sub-springs constant is k = 2K, double the original.

Now, back to the other questions in #6.
 
  • #13
The force made by each sub spring in the loaded equilibrium on the mass is 160N. But if you don't know how much it is shifted by then the force is going to be -800xN and 800xN.
 
  • #14
So the effective spring constant is 800 N/m, correct?
 
  • #15
Yes it is.
 
  • #16
So, do you have the answer?
 
  • #17
So is the angular frequency affected by the two springs being pre stretched? If not then the question is pretty easy.
 
  • #18
In #13, you found the total force on the mass. Because it is total, nothing else can affect the system.
 
  • #19
Isn't the total force 0 at equilibrium? I am thinking how I would incorporate the forces into the angular frequency, but I can't thinking of anything. Am I missing something?
 
Last edited:
  • #20
You are over-thinking the problem and are confusing yourself. You have already found the force. But let's do it one more time. Both sub-springs have stiffness k = 2K, where K is the stiffness of the original spring. Let's say the original string is stretched by 2d, then each sub-spring is stretched by d in the (loaded) equilibrium position.

Let x be the shift from the loaded equilibrium. Then the extension of the left sub-spring is (d + x); of the right sub-spring, (d - x). What are the restoring forces due to the left sub-spring? due to the right sub-spring? the total force?

Mind the signs.
 
  • Like
Likes 1 person
  • #21
The magnitude of the total force will be 1600x.
 
  • #22
So what does the equation for Newton's second law look like? Can you determine the frequency from it?
 
  • #23
ma = 1600x
 
  • #24
As I said in #20, mind the signs.
 
  • #25
Then it's just -1600x
 
  • #26
So a = -w^2x right? Then I can find the period?
 
  • #27
You got the equation of simple harmonic motion. Substitute the numbers into the period formula, and you are done.
 
  • #28
ma = -1600x
a = -1600x/2.4

a = -ω^2*x
sqrt(1600/2.4) = ω

ωT = 2∏
T = 2∏/sqrt(1600/2.4)
= 0.24s

This is right?
 
  • #29
Correct.
 
  • #30
This would have gone so much smoother if I didn't miss the lecture with that acceleration equation
 

What is the formula for calculating the period of oscillation for a mass attached to a spring?

The formula for calculating the period of oscillation for a mass attached to a spring is T = 2π√(m/k), where T is the period, m is the mass of the object, and k is the spring constant.

How do I determine the mass and spring constant to use in the formula?

The mass can be determined by weighing the object, while the spring constant can be found by conducting a simple experiment where the displacement and force of the spring are measured and then used in the equation k = F/x, where F is the force and x is the displacement.

What is the unit of measurement for the period of oscillation?

The unit of measurement for the period of oscillation is seconds (s).

Can the period of oscillation change if the mass or spring constant is altered?

Yes, the period of oscillation will change if the mass or spring constant is altered. The period is directly proportional to the square root of the mass and inversely proportional to the square root of the spring constant, so any changes in these values will affect the period.

Is there a maximum or minimum period of oscillation for a mass attached to a spring?

No, there is no maximum or minimum period of oscillation for a mass attached to a spring. The period can be infinitely long or infinitely short, depending on the values of the mass and spring constant.

Similar threads

  • Introductory Physics Homework Help
Replies
16
Views
389
  • Introductory Physics Homework Help
2
Replies
51
Views
2K
  • Introductory Physics Homework Help
Replies
20
Views
2K
  • Introductory Physics Homework Help
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
13
Views
619
  • Introductory Physics Homework Help
Replies
4
Views
926
  • Introductory Physics Homework Help
Replies
18
Views
2K
  • Introductory Physics Homework Help
Replies
17
Views
1K
  • Introductory Physics Homework Help
Replies
11
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
1K
Back
Top