Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Simple harmonic oscillator

  1. Sep 9, 2016 #1
    • In the series solution of simple harmonic oscillator,why do we have a factor of 1/2 in the trial solution?
     
  2. jcsd
  3. Sep 9, 2016 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    There's a lot more factors there. Could you be a bit more specific and post the trial solution you are referring to ?
     
  4. Sep 9, 2016 #3
    IMG_20160909_124416460.jpg
     
  5. Sep 9, 2016 #4
    the factor is chosen from the asymptotic behavior of the solution of differential equation ...in the above situation as the 2nd order partial derivative should yield square of the variable times the function the factor 1/2 is chosen...
    see for details
    <http://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-notes/MIT8_04S13_Lec08.pdf> [Broken]

    however the trial functions are always chosen by anticipating the behaviour of the solution as r going to zero and infinity as it is easy to estimate. for bound states at both these extremities the wave function should go to zero.
     
    Last edited by a moderator: May 8, 2017
  6. Sep 9, 2016 #5
    But still we are left with the term e^-q^2/2
     
    Last edited by a moderator: May 8, 2017
  7. Sep 9, 2016 #6

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    You take ##\psi = e^{-q^2 /2}## because that's the solution. A better question is how do you get to that solution?

    If you try ##\psi = e^{-q}## then ##\psi'' = \psi## so that doesn't work.

    If you try ##\psi = e^{-q^2}## then ##\psi'' = (4q^2 - 2)\psi## so that doesn't quite work, but it should give you the idea:

    If you try ##\psi = e^{-q^2 /2}## then ##\psi'' = (q^2 - 1)\psi## and, if you ignore the ##-1## for large ##q##, then you have a solution.
     
  8. Sep 9, 2016 #7
    But if we take the 2nd case still our assumption is correct for large value of q
     
  9. Sep 9, 2016 #8

    PeroK

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Really? Like ##4q^2 - 2 \approx q^2## for large ##q##?
     
  10. Sep 9, 2016 #9
    Ok got the point.thanks for simplifying the point!
     
  11. Sep 9, 2016 #10

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    So basically the trial solution is ##\ e^{-\alpha q^2} \ ## and the 'characteristic equation' yields ##\ 4\alpha^2q^2-2\alpha q - q^2 = 0 \ ##, to expand a little on PeroK post #8.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted