Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Simple Quantum Gates

  1. May 19, 2012 #1
    The example from my text book shows one example of how to compute the matrix for a gate.
    The example is the U_CNOT operator: |00> -> |00>, |01> -> |01>; |10>->|11>; |11>->|10>

    Then they show that the operator is merely the sum of the outer products of these.

    |00><00| + |10><10| + |01><11| + |11><01| = [ I 0 ; 0 X] : where X is the "NOT" operator.

    When I perform the same sort of computation with the "top" part of the circuit as the "target bit" and the bottom part as the "control bit" I get the identity; however, my first intuition was that it should be [X 0; 0 I] (which is also wrong). The correct answer is that it should be:
    [1 0 0 0; 0 0 0 1; 0 0 1 0 ; 0 1 0 0 ] (that's row by row). I understand how to read the circuit, but not how to compute the associated matrix.

    I've noticed that if I put the basis set into a "vector" then I can get the computation to work out, but this seems kinda "hand-wavy":
    [tex]\begin{pmatrix} 1 &\0 &\0 &\0 \\ 0 &\0 &\0 &\1 \\ 0 &\0 &\1 &\0 \\ 0 &\1 &\0 &\0 \end{pmatrix} \begin{pmatrix}|00) \\ |01)\\ |10)\\ |11)\\ \end{pmatrix}= \begin{pmatrix}|00) \\ |11)\\ |10)\\ |01)\\ \end{pmatrix}[/tex]

    For example I suppose this will also work:

    [tex]\begin{pmatrix} \alpha &\0 &\0 &\0 \\ \beta &\1 &\1 &\0 \\ \gamma &\--1 &\0 &\+1 \\ \delta &\1 &\0 &\0 \end{pmatrix} \begin{pmatrix}|00) \\ |01)\\ |10)\\ |11)\\ \end{pmatrix}= \begin{pmatrix}|00) \\ |11)\\ |10)\\ |01)\\ \end{pmatrix} : {\alpha, \beta,\gamma,\delta \in Reals}[/tex]
     
    Last edited: May 19, 2012
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Simple Quantum Gates
  1. One-qbit quantum gates (Replies: 2)

Loading...