Hi(adsbygoogle = window.adsbygoogle || []).push({});

The following question is from Oppenheim/Wilsky/Nawab chapter 1.

Consider a periodic signal

[tex]x(t) = 1[/tex] for [tex]0 \leq t \leq 1[/tex]

[tex]x(t) = -2 [/tex] for [tex]1 < t <2[/tex]

with period [itex]T = 2[/itex]. The derivative of this signal is related to the impulse train

[tex]g(t) = \sum_{k = -\infty}^{\infty}\delte(t-2k)[/tex]

with period T = 2. It can be shown that

[tex]\frac{dx(t)}{dt} = A_{1}g(t-t_{1}) + A_{2}g(t-t_{2})[/tex]

Determine the values of [itex]A_{1}[/itex], [itex]t_{1}[/itex], [itex]A_{2}[/itex], and [itex]t_{2}[/itex].

I got stuck with this one. Anyway here's my solution. Would appreciate any help in solving the problem.

[tex]x(t) = \sum_{k = -\infty}^{\infty}(u(t-2k) - u(t-2k-1)) + (-2)(u(t-2k-1) - u(t-2k-2))[/tex]

so

[tex]x(t) = \sum_{k = -\infty}^{\infty}u(t-2k) - 3\sum_{k = -\infty}^{\infty}u(t-2k-1)) -2\sum_{k = -\infty}^{\infty}u(t-2k-2) [/tex]

so

[tex]\frac{dx}{dt} = g(t) - 3g(t-1) - g(t-2)[/tex]

which is wrong...

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Simple question [Signals and Systems]

**Physics Forums | Science Articles, Homework Help, Discussion**