Hi(adsbygoogle = window.adsbygoogle || []).push({});

The following question is from Oppenheim/Wilsky/Nawab chapter 1.

Consider a periodic signal

[tex]x(t) = 1[/tex] for [tex]0 \leq t \leq 1[/tex]

[tex]x(t) = -2 [/tex] for [tex]1 < t <2[/tex]

with period [itex]T = 2[/itex]. The derivative of this signal is related to the impulse train

[tex]g(t) = \sum_{k = -\infty}^{\infty}\delte(t-2k)[/tex]

with period T = 2. It can be shown that

[tex]\frac{dx(t)}{dt} = A_{1}g(t-t_{1}) + A_{2}g(t-t_{2})[/tex]

Determine the values of [itex]A_{1}[/itex], [itex]t_{1}[/itex], [itex]A_{2}[/itex], and [itex]t_{2}[/itex].

I got stuck with this one. Anyway here's my solution. Would appreciate any help in solving the problem.

[tex]x(t) = \sum_{k = -\infty}^{\infty}(u(t-2k) - u(t-2k-1)) + (-2)(u(t-2k-1) - u(t-2k-2))[/tex]

so

[tex]x(t) = \sum_{k = -\infty}^{\infty}u(t-2k) - 3\sum_{k = -\infty}^{\infty}u(t-2k-1)) -2\sum_{k = -\infty}^{\infty}u(t-2k-2) [/tex]

so

[tex]\frac{dx}{dt} = g(t) - 3g(t-1) - g(t-2)[/tex]

which is wrong...

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Simple question [Signals and Systems]

Loading...

Similar Threads - Simple question Signals | Date |
---|---|

Simple and clear LED question. LEDs pop and break | May 23, 2017 |

Just simple question about a li-ion battery in a non-hybrid car | Apr 5, 2017 |

Simple Photodiode question | May 7, 2016 |

Simple Question about Electricity | Nov 30, 2015 |

Very simple name-plate question | Nov 13, 2015 |

**Physics Forums - The Fusion of Science and Community**