1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Simultaneous equation - momentum and kinetic energy

  1. Oct 4, 2009 #1
    I'm trying to work out elastic collision equations for some small game development.

    In any body, p is momentum, m mass, KE kinetic energy:

    Code (Text):
    p = mv
    KE = m v² /2
    Therefore

    Code (Text):
    KE = p² / 2m  (also confirmed in many textbooks and resources)
    So, two colliding bodies, A and B, where A.m is the mass of A, B.p the momentum of B and so on, T is total, so T.E being total energy and T.p being total momentum:

    (after collision)

    A.E + B.E = T.E

    So

    Code (Text):
    A.p²     B.p²
    ----  +  ----  =  T.E
    2A.m     2B.m
    Since A.p + B.p = T.p ; A.p = T.p - B.p:

    Code (Text):
    A.p²     (T.p-A.p)²  
    ----  +  ----------  =  T.E
    2A.m        2B.m
    Added fractions:

    Code (Text):

    A.p² 2B.m      (T.p-A.p)² 2A.m
    ----------  +  ----------------  =  T.E
    2A.m 2B.m      2B.m       2A.m


    A.p² 2B.m   +  2A.m  (T.p-A.p)²
    ------------------------------- = T.E
                4A.m B.m
    Expanded the bracket:

    Code (Text):
    A.p² 2B.m   +  2A.m  (T.p² - 2A.p T.p + A.p²)
    ---------------------------------------------- = T.E
                    4A.m B.m
    Multiplied by the denominator:

    Code (Text):
    T.E * 4 A.m B.m = A.p² 2B.m   +  2A.m  (T.p² - 2A.p T.p + A.p²)
    Expanded the remaining bracket:

    Code (Text):
    T.E * 4 A.m B.m = A.p² 2B.m   +  2A.m T.p² - 4A.m A.p T.p + 2A.m A.p²
    Moved all products without A.p to the left, and added some pre-collection brackets:

    Code (Text):
    T.E * 4 A.m B.m - 2A.m T.p²  =  A.p² (2B.m) - A.p(4A.m T.p) + A.p² (2A.m)
    Collect up:

    Code (Text):
    T.E * 4 A.m B.m - 2A.m T.p²  =  A.p² (2B.m+2A.m) - A.p (4A.m T.p)
    Make equal to zero:

    Code (Text):
    0  =  A.p² (2B.m+2A.m) + A.p (-4A.m T.p) - (T.E * 4 A.m B.m - 2A.m T.p²)
    Now we should be able to apply the quadratic equation, since 0 = ax² + bx + c. However, calculating the final momentum and E of A by this method and calculating the remaining momentum and E for B, the final energy is always many times greater than the initial input energy. Help >__<

    I've taken

    Code (Text):
    a = (2B.m+2A.m) + A.p (-4A.m T.p)
    b =  -4A.m T.p
    c = - (T.E * 4 A.m B.m - 2A.m T.p²)

    Used x = -b ± sqrt(b²-4ac), both plus and minus come out vastly incorrect
    Thanks :)
     
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Loading...