- #1
- 53
- 0
x[tex]^{5}[/tex]=5y[tex]^{3}[/tex]-4z
y[tex]^{5}[/tex]=5z[tex]^{3}[/tex]-4x
z[tex]^{5}[/tex]=5x[tex]^{3}[/tex]-4y
We get five solutions (0,1,-1,2,-2) for x=y=z. But it's hard to do this when y[tex]\neq[/tex]x[tex]\neq[/tex]z.
Any ideas?
y[tex]^{5}[/tex]=5z[tex]^{3}[/tex]-4x
z[tex]^{5}[/tex]=5x[tex]^{3}[/tex]-4y
We get five solutions (0,1,-1,2,-2) for x=y=z. But it's hard to do this when y[tex]\neq[/tex]x[tex]\neq[/tex]z.
Any ideas?