Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Sketching a simple plane in R3 (should be easy, but not for me :P)

  1. Aug 12, 2005 #1
    Well, I'm learning plane sketching in R3.

    One of the questions is 5y- z - 10 = 0

    It is my understanding that the y intercept will be 2, and the z intercept will be -10.

    With the absence of an x-term it should be parallel (?) to the x-axis.

    I sketch the three axis, note the two points (0,2,0) and (0,0,-10) as the intercepts, but I have no idea how to actually draw the plane itself from this point on.

    Unfortunately I have no scanner available to me to even show you what I have so far.

    If you can even (verbally) suggest how I draw it, that'd be great.
  2. jcsd
  3. Aug 12, 2005 #2
    To clarify, I have the two points selected, but I just don't understand how I could draw a rectangular section that would be parallel to the x-axis.

    It looks....skewed
  4. Aug 13, 2005 #3
    x can be anything. if you draw the line 5y-z=10 in the yz-plane & then imagine lifting it straight upwards you'll get your plane.
  5. Aug 13, 2005 #4
    An easy way I keep track of planes: if the equation is
    [tex]a x + b y + c z = d[/tex]

    then a normal vector is
    [tex]\vec{n} = a \hat{x} + b \hat{y} + c \hat{z}[/tex]

    If you think about it long enough it'll become intuitive. A plane z=constant, is parallel to the xy-plane, so the normal vector goes straight up in the z-direction.
  6. Aug 13, 2005 #5

    I think I understand it now. I believe that I was going about it the wrong way. It just looked a little funny with the way I drew the x axis. Hard to comprehend three dimensions on a two dimensional paper :D

    Later today I'll try and draw it in MSPaint :D
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Sketching a simple plane in R3 (should be easy, but not for me :P)
  1. Simple plane (Replies: 3)