something funny's going on here, and I can't see what :yuck:(adsbygoogle = window.adsbygoogle || []).push({});

For a sequence [tex] {x_n} [/tex] , where each term is non-negative

the series [tex] x_1 + x_2 + ... +x_n + ... [/tex] converges

proof:

it will suffice to show that the sequence of partial sums [tex] {s_n} [/tex] is bounded

where each [tex]s_i = x_1 + ... + x_i [/tex]

when i=1,

[tex] s_1 = x_1 [/tex]

so the result holds true for i=1

let the result be true for all positive numbers up to some k such that

[tex] s_k <= some b [/tex]

now consider [tex] s_{k+1} [/tex].....

[tex] s_{k+1} = s_k + x_{k+1} <= b + x_{k+1} [/tex]

so the result holds true for all k= 1, 2, 3 ....

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Sketchy Induction Proof

Loading...

Similar Threads for Sketchy Induction Proof |
---|

B Proof of a limit rule |

B Proof of quotient rule using Leibniz differentials |

B Don't follow one small step in proof |

**Physics Forums | Science Articles, Homework Help, Discussion**