Skew symmetric matrix question

  • Thread starter TTob
  • Start date
  • #1
21
0
Let A in n x n real matrix.
For every x in R^n we have <Ax,x>=0 where < , > is scalar product.
prove that A^t=-A (A is skew symmetric matrix)
 

Answers and Replies

  • #2
tiny-tim
Science Advisor
Homework Helper
25,836
251
Let A in n x n real matrix.
For every x in R^n we have <Ax,x>=0 where < , > is scalar product.
prove that A^t=-A (A is skew symmetric matrix)

Hi TTob! :smile:

Hint: just write out <Ax,x>=0 in terms of Aij etc …

then jiggle it around a bit! :smile:

What do you get?
 
  • #3
21
0
Thank you.

note [tex]x=(x_1,...,x_n)[/tex] and [tex]A=(a_{ij})[/tex].
then [tex](Ax)_i=[/tex] [tex]\sum_{\substack{0\leq j\leq n}} a_{ij}x_j[/tex]
then
[tex]<Ax,x>=[/tex] [tex]\sum_{\substack{0\leq j\leq n \\ 0\leq i\leq n}} a_{ij}x_i x_j=0[/tex]

when you put [tex]x=e_i[/tex] you get [tex]a_{ii}=0[/tex] for all i.
when you put [tex]x=e_i+e_j[/tex] you get [tex]a_{ii}+a_{ij}+a_{ji}+a_{jj}=0[/tex] for all i,j .

so [tex]a_{ji}=-a_{ij}[/tex] for all i,j and then [tex]A^t=-A[/tex].
 
  • #4
tiny-tim
Science Advisor
Homework Helper
25,836
251
Hi TTob! :smile:

Yes … or if you want to avoid using components …

[tex]0\ =\ <A(x+y),x+y>\ -\ <Ax,x>\ -\ <Ay,y>\ \ =\ \ <Ax,y>\ +\ <Ay,x>\ \ =\ \ <(A + A^T)x,y>[/tex] :smile:
 
  • #5
HallsofIvy
Science Advisor
Homework Helper
41,847
964
Or use the fact that <Ax, y>= <x, ATy>. (That is a more general definition of "adjoint")

From that, <Ax, x>= <x, ATx>. If A is skew-symmetric, <x, AT x>= -<Ax, x> so <Ax, x>= -<Ax, x> and <Ax, x>= 0.
 
  • #6
tiny-tim
Science Advisor
Homework Helper
25,836
251
… <Ax, x>= <x, ATx>. If A is skew-symmetric, <x, AT x>= -<Ax, x> so <Ax, x>= -<Ax, x> and <Ax, x>= 0.

Hi HallsofIvy! :smile:

erm …
I think you've proved the transpose of the original theorem! :wink:
 

Related Threads on Skew symmetric matrix question

  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
7
Views
3K
  • Last Post
Replies
1
Views
12K
  • Last Post
Replies
5
Views
5K
  • Last Post
Replies
3
Views
1K
Replies
1
Views
2K
Replies
3
Views
6K
Replies
1
Views
1K
  • Last Post
Replies
2
Views
17K
Top