# Sl(2,z) matrices with integer coefficients

#### JSG31883

Let SL(2,Z) be the set of 2x2 matrices with integer coefficients.
I know that SL(2,Z) is generated by S and T, where
S= (0 -1
1 0)
and T= (1 1
0 1).

But how can I show that everyone element of G (the group generated by S and T) is in SL(2,Z)?

Also, let FcH (upper half-plane) be defined as F= {z in C: abs(z)>1, abs(Re(z)<1/2)}.
How can I draw a picture of F? Which linear fractional transformations correspond to S and T (as given above)?

Related Introductory Physics Homework Help News on Phys.org

#### matt grime

Homework Helper
Am i reading riht? tw group generrated by S and T is the set of all products of S, T and their inverses in some order some fininte number of times. the entries are boviously all integers and the derteminants all1 so of course it is in SL(2,Z)

and the second part... well, as alwayas, draw on the regiosn where |z|=1, and |Re(z)|=1/2 and work out which region corresponds to the inequialities

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving