- #1

Oxymoron

- 870

- 0

I have this problem which I want to do before I go back to uni. The context was not covered in class before the break, but I want to get my head around the problem before we resume classes. So any help on this is greatly appreciated.

**Question****Suppose [itex]C[/itex] is a nonempty closed convex set in a Hilbert Space [itex]H[/itex].**

(i) Prove that there exists a unique point [itex]c_0 \in C[/itex] of smallest norm, and that we then have [itex]\Re \langle c_0 \, | \, c-c_0\rangle \geq 0[/itex] for all [itex]c \in C[/itex].

(ii) For any point [itex]x_0 \in H[/itex] show that there is a unique closest point [itex]c_0[/itex] of [itex]C[/itex] to [itex]x_0[/itex], and that it satisfies the(i) Prove that there exists a unique point [itex]c_0 \in C[/itex] of smallest norm, and that we then have [itex]\Re \langle c_0 \, | \, c-c_0\rangle \geq 0[/itex] for all [itex]c \in C[/itex].

(ii) For any point [itex]x_0 \in H[/itex] show that there is a unique closest point [itex]c_0[/itex] of [itex]C[/itex] to [itex]x_0[/itex], and that it satisfies the

*variational inequality***[itex]\Re \langle x_0 - c_0 \,|\, c -c_0\rangle \leq 0[/itex] for all [itex]c \in C[/itex]**
Last edited: