1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Smallest wavelenghth?

  1. Apr 20, 2009 #1
    The above quote is from another thread about a month ago, so i started another thread.

    As above...red light about 600 nanometers, blue light about 400 nanometers, so what could the smallest possible wavelength of light be or is it infinely small?

    or the longest possible wavelength for that matter
  2. jcsd
  3. Apr 20, 2009 #2
    Do you mean the smallest wavelength of visible light or any type?

    Gamma rays have the shortest wavelengths of any other type of electromagnetism. They can have wavelengths of less than 10 picometre.

    On the other hand, Extremely low frequency is abought [tex]\lambda[/tex]=100Mm
    Last edited: Apr 20, 2009
  4. Apr 21, 2009 #3
    You might say that the smallest wavelength possible would be http://en.wikipedia.org/wiki/Planck_length" [Broken] (1.616e-35 metres) which is the smallest distance predicted before quantum effects reduce spacetime to a quantum foam.
    Last edited by a moderator: May 4, 2017
  5. Apr 21, 2009 #4
    Thx for your replies, but they really don't answer my question...

    Could the smallest/longest wavelength be ascosciated with zero point energy?
    Last edited by a moderator: May 4, 2017
  6. Apr 21, 2009 #5


    User Avatar
    Science Advisor
    Gold Member

    Possibly the longest wavelength of light can be associated with a zero-point energy, but the smallest wavelength of light is associated with the highest energy possible in one photon. These are probably limited by Quantum Mechanics, though I'm not sure.

    The highest and lowest wavelengths are, naively, as close to infinity and zero as possible, disregarding quantum effects. These can occur as you get red/blue shifted and as you get closer and closer to the speed of light. We can see that from the relativistic doppler shift:
    Although since you can never achieve the speed of light the wavelengths will never achieve infinity or zero.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook