Smallest wavelenghth?

  • Thread starter scupydog
  • Start date
  • #1
101
0

Main Question or Discussion Point

Wavelengths vary over many orders of magnitude; AM radio is about 300 meter wavelength, FM about 3 m, 1 GHz about 30 cm, infrared about 1 to 100 microns, red light about 600 nanometers, blue light about 400 nanometers, etc.
The above quote is from another thread about a month ago, so i started another thread.

As above...red light about 600 nanometers, blue light about 400 nanometers, so what could the smallest possible wavelength of light be or is it infinely small?

or the longest possible wavelength for that matter
 

Answers and Replies

  • #2
373
0
Do you mean the smallest wavelength of visible light or any type?

Gamma rays have the shortest wavelengths of any other type of electromagnetism. They can have wavelengths of less than 10 picometre.

On the other hand, Extremely low frequency is abought [tex]\lambda[/tex]=100Mm
 
Last edited:
  • #3
748
39
You might say that the smallest wavelength possible would be http://en.wikipedia.org/wiki/Planck_length" [Broken] (1.616e-35 metres) which is the smallest distance predicted before quantum effects reduce spacetime to a quantum foam.
 
Last edited by a moderator:
  • #4
101
0
Do you mean the smallest wavelength of visible light or any type?

Gamma rays have the shortest wavelengths of any other type of electromagnetism. They can have wavelengths of less than 10 picometre.

On the other hand, Extremely low frequency is abought [tex]\lambda[/tex]=100Mm
You might say that the smallest wavelength possible would be http://en.wikipedia.org/wiki/Planck_length" [Broken] (1.616e-35 metres) which is the smallest distance predicted before quantum effects reduce spacetime to a quantum foam.
Thx for your replies, but they really don't answer my question...

Could the smallest/longest wavelength be ascosciated with zero point energy?
 
Last edited by a moderator:
  • #5
Matterwave
Science Advisor
Gold Member
3,965
326
Possibly the longest wavelength of light can be associated with a zero-point energy, but the smallest wavelength of light is associated with the highest energy possible in one photon. These are probably limited by Quantum Mechanics, though I'm not sure.

The highest and lowest wavelengths are, naively, as close to infinity and zero as possible, disregarding quantum effects. These can occur as you get red/blue shifted and as you get closer and closer to the speed of light. We can see that from the relativistic doppler shift:
[tex]\lambda_0=\sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}\lambda_s[/tex]
Although since you can never achieve the speed of light the wavelengths will never achieve infinity or zero.
 

Related Threads for: Smallest wavelenghth?

  • Last Post
2
Replies
42
Views
7K
  • Last Post
Replies
11
Views
2K
  • Last Post
Replies
6
Views
3K
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
4
Views
1K
  • Last Post
2
Replies
25
Views
3K
  • Last Post
2
Replies
25
Views
2K
  • Last Post
Replies
8
Views
3K
Top