1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

So close to cracking this one

  1. Nov 24, 2005 #1
    So they ask to show that each element of a group can be mapped to it's inverse is an automorphism only if the group is abelian.

    i can figure it out why each element is abelian to it's inverse, but i am short of understaning why every element must be commutable. any tips/ hints? thanks
     
  2. jcsd
  3. Nov 24, 2005 #2

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    "abelian to its inverse"? what does that mean?

    I can't think of a tip that doesn't just give you the answer., so we'll have to go for the standard tips for ANY question.

    What does it mean if inversion is an automorphism. ie what is the definition of automorphism, heck, just show it's not a homomorphism. write out this condition: if f is a homomorphism then f(xy)=f(x)f(y). Clearly this will show where the problem is.,
     
  4. Nov 24, 2005 #3
    okay, i get that, but it says show this is true if and only if G is abelian.
     
  5. Nov 24, 2005 #4

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    Erm, yes, well, haver you written out what this means exactly when f(x)=x^{-1}? Because that is all you have to do.
     
  6. Nov 24, 2005 #5
    just show 1-1 onto and op.
    1-1, easy
    onto, easy take x=y^-1
    op. f(xy)=(xy)^-1=(y^-1)(x^-1)=(x^-1)(y^-1)=f(x)f(y)
     
  7. Nov 24, 2005 #6

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    In what way are you claiming that is a proof of the stated question? (nb we're not supposed to just hand out answers, especially if the OP has not written out their work and indicated where they're stuck and why)
     
  8. Nov 24, 2005 #7
    this is what i'm saying so far

    since everyelement in G is mapped to it's inverse, and since the following is true alpha(ab)-->(ab)^-1 --->(ba)^-1-->alpha(ba) then G must be abelian for this to be true. ...make sense or am i missing something?
     
  9. Nov 24, 2005 #8

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    I think you have the right idea, though what the --> means is puzzling me, and that sequence, well, I'm not sure how to interpret it: if it is a homomorphism, then it follows that

    (xy)^{-1]}=x^{-1}y^{-1}

    however we know that (xy)^{-1}= y^{-1}x^{-1}

    so....?

    People really ought to use more words when answering questions.
     
    Last edited: Nov 24, 2005
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: So close to cracking this one
  1. Closed set (Replies: 11)

  2. Closed set (Replies: 14)

Loading...