(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

On crystal which containing ions [tex]V^{4+}[/tex], electronic configuration [tex]3d^1[/tex], was applied magnetic field [tex]B_0=2,5T[/tex].

If the temperature is [tex]1K[/tex], find the relative concentration of electron states population [tex]\frac{N_2}{N_1}[/tex].

In what temperature we should expect 99% ions in ground state?

2. Relevant equations

[tex]m_J=\pm J[/tex]

[tex]E=\pm \mu_B B_0[/tex]

[tex]\frac{N_2}{N_1}=e^{-\frac{\Delta E}{k_B T}[/tex]

[tex]g=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2J(J+1)}[/tex]

3. The attempt at a solution

I have some solution of this problem but I don't understand it.

In solution

[tex]S=\frac{1}{2}, L=3, J=\frac{1}{2}[/tex]

Why?

They get [tex]g=2[/tex]

If I have configuration [tex]3d^1[/tex]

then

[tex]z=1[/tex], [tex]l=2[/tex]

[tex]S=S_{max}=\frac{z}{2}=\frac{1}{2}[/tex]

[tex]L=L_{max}=S_{max}(2l+1-z)=2[/tex]

[tex]J=|L-S|=\frac{3}{2}[/tex]

And the basic term is

[tex]^2D_{\frac{3}{2}}[/tex]

How they get [tex]L=3,J=\frac{1}{2}[/tex]???

[tex]\frac{N_2}{N_1}=e^{-\frac{\Delta E}{k_BT}}=e^{-\frac{2\mu_BB_0}{k_BT}}=0,035[/tex]

From the text of problem - In what temperature we should expect 99% ions in ground state?

[tex]\frac{N_2}{N_1}=0,01[/tex]

[tex]ln(\frac{N_2}{N_1})=-\frac{\Delta E}{k_B T}[/tex]

[tex]T=-\frac{\Delta E}{k_B ln(\frac{N_2}{N_1})}=0,7K[/tex]

So my fundamental problem is how they get

[tex]S=\frac{1}{2}, L=3, J=\frac{1}{2}[/tex]

Thanks for your answer!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Solid state magnetism

**Physics Forums | Science Articles, Homework Help, Discussion**