- #1

- 246

- 1

[tex]\frac{\partial \Psi(z,t)}{\partial t} + a * \cos^2(\theta(z,t)) \frac{\partial \Psi(z,t)}{\partial z} - b \frac{N(z)}{\Omega(t)} \cos^4(\theta(z,t))\Psi(z,t) = 0[/tex]

a,b are constants N(z) and [tex]\Omega(t)[/tex] are known functions of z and t respectivly, and [tex]\theta(z,t)[/tex] is a known function of z and t. I need to find [tex]\Psi[/tex], I've searched on the net but couldn't find a solution.

I guess the general form must be

[tex]\frac{\partial \Psi(z,t)}{\partial t} + f(z,t) \frac{\partial \Psi(z,t)}{\partial z} - g(z,t)\Psi = 0[/tex]