Solution to partial differential equation

  • Thread starter mrandersdk
  • Start date
  • #1
246
1
I have the partial differential equation:

[tex]\frac{\partial \Psi(z,t)}{\partial t} + a * \cos^2(\theta(z,t)) \frac{\partial \Psi(z,t)}{\partial z} - b \frac{N(z)}{\Omega(t)} \cos^4(\theta(z,t))\Psi(z,t) = 0[/tex]

a,b are constants N(z) and [tex]\Omega(t)[/tex] are known functions of z and t respectivly, and [tex]\theta(z,t)[/tex] is a known function of z and t. I need to find [tex]\Psi[/tex], I've searched on the net but couldn't find a solution.

I guess the general form must be

[tex]\frac{\partial \Psi(z,t)}{\partial t} + f(z,t) \frac{\partial \Psi(z,t)}{\partial z} - g(z,t)\Psi = 0[/tex]
 

Answers and Replies

Related Threads on Solution to partial differential equation

Replies
1
Views
3K
Replies
1
Views
1K
  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
12
Views
4K
  • Last Post
Replies
6
Views
2K
Replies
1
Views
896
Top