Solve a sum in prob. question

  • Thread starter ArcanaNoir
  • Start date
  • #1
ArcanaNoir
775
4

Homework Statement



Finding the expected value of x, with poisson distribution. I don't follow the sum. It goes like this:

[tex] E(x)= \sum_{x=0}^{\infty} \frac{xe^{-\lambda}\lambda^x}{x!} [/tex]
[tex] = e^{-\lambda} \sum_{x=0}^{\infty} \frac{x\lambda^x}{x(x-1)!} [/tex]
[tex] = \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} [/tex]
[tex] = \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} [/tex]
[tex] = \lambda e^{-\lambda}e^{\lambda} = \lambda [/tex]


So basically the part I don't get is why they say
[tex] \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{\lambda} [/tex]
 

Answers and Replies

  • #2
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
22,178
3,305
That is just the Taylor series expansion of [itex]e^x[/itex]. Remember that

[tex]f(x)=\sum_{k=0}^{+\infty}{\frac{f^{(k)}(0)}{k!}x^k}[/tex]

So if [itex]f(x)=e^x[/itex], then

[tex]e^x=\sum_{k=0}^{+\infty}{\frac{x^k}{k!}}[/tex]
 
  • #3
ArcanaNoir
775
4
Thanks micro. This chapter is going to be the death of me. All kinds of crazy sums that end up with specific values that I'm supposed to remember from two weeks in calc II. Doomed! I hate sums.
 

Suggested for: Solve a sum in prob. question

  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
0
Views
1K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
0
Views
1K
  • Last Post
Replies
9
Views
2K
Replies
4
Views
2K
  • Last Post
Replies
1
Views
1K
Replies
5
Views
1K
  • Last Post
Replies
8
Views
1K
Top