(adsbygoogle = window.adsbygoogle || []).push({}); Solve u = 2x - 3y & v = -x + y in terms of x & y, then find Jacobian.

Here is the problem:

Solve the system [tex]u = 2x\;-\;3y,\;\;v = -x\;+\;y[/tex] for x and y in terms of u and v. Then find the Jacobian [tex]\frac{\partial\left(x,\;y\right)}{\partial\left(u,\;v\right)}[/tex].

Find the image under the trasformation [tex]u = 2x\;-\;3y,\;\;v = -x\;+\;y[/tex] of the parallelogram [tex]R[/tex] in the xy-plane with boundries [tex]x = -3,\;\;x = 0,\;\;y = x\;and\;y = x\;+\;1[/tex]

Here is what I have:

[tex]y = -u\;-\;2v\;and\;x = -u\;-\;3v[/tex] I am not sure of these answers.

Assuming those are correct, I get the Jacobian to be [tex]-2[/tex]. This is where I am stuck, how do I do the second part? I can get the [tex]v-values[/tex] to be [tex]0\;and\;1[/tex] here,

[tex]y = x\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;y = x\;+\;1[/tex]

[tex]-2v\;-\;u = -3v\;-\;u\;\;\;\;\;-2v\;-\;u = -3v\;-\;u\;+\;1[/tex]

[tex]v = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;v = 1[/tex]

But when I try and do the last part for the u values, I get [tex]u = u\;+\;3[/tex], which is impossible becaus then [tex]0 = 3[/tex].

Please help!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Solve u = 2x - 3y & v = -x + y in terms of u & v, then find Jacobian.

**Physics Forums | Science Articles, Homework Help, Discussion**