Hi, apologies if this is simple. I'm a bit confused with a piece of text from Introductory Nuclear Physics by Wong. It's talking about finding the expectation value of the magnetic moment of the deuteron. In the deuteron it is known the total spin quantum number is S = 1. In deriving the total [itex] \mu [/itex] we have a term(adsbygoogle = window.adsbygoogle || []).push({});

[itex] < S_p - S_n> [/itex] (note: this is meant to be operators).

Quoting from the text: "Since the operator [itex] S_p - S_n [/itex] acts on proton and neutron spins with opposite signs, it can only connect between two states, one with S = 1, and the other with S = 0, and as a result, cannot contribute to the expectation value of interest to us here".

I'm at a bit of a loss as to what it's saying here, I know

[itex] < S_p - S_n> = \int \phi^*S_p\phi dV - \int \phi^*S_n \phi dV[/itex]

where [itex] \phi [/itex] is the total deuteron wavefunction. Since the deuteron is in an S = 1 state the proton and neutron either have the same spin z-component or opposite. Since really when we talk about the magnetic moment we're talking about the z-component, any state where the z-component is the same for the proton and neutron cancel out in this [itex] S_p - S_n [/itex] expectation value....but what about if the spins are opposite? I don't really comprehend what the text is saying.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Sp - Sn in deuteron is zero?

**Physics Forums | Science Articles, Homework Help, Discussion**